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Chapter 1Introdu
tion to Deformation Theory
Example 1.1 (Plückers idea, (1839)). Let X = V (f) ⊂ P2, with f ∈ R[x, y, z] be a curve in the
plane . What can one say about the shape of X? J. Plücker used deformation theory in order to get
an idea of the possible shapes of a quartic curve.
Take f = Q1 · Q2 be the product of two general quadrics Q1 and Q2 intersecting in four points. Its
zero set looks like:

The four intersection points we call p1, p2, p3, p4. These points are called, for obvious reasons, double
points of X . Now consider the polynomial

F = Q1 ·Q2 + s · P ∈ R[s, x, y, z]

with P any homogeneous polynomial of degree 4 and put

XS = V (F ) ⊂ P2 × S

with S = R. The map (s, x, y, z) 7→ s restricts to a map

π : XS −→ S

So XS can be seen as a family of curves Xs := π−1(s). When |s| << 1, the curve Xs will be very close
to our original curve X = X0. We investigate what can happen locally at a double point p. There are
three possibilities, indicated by the following pictures
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CHAPTER 1. INTRODUCTION TO DEFORMATION THEORY 5

p

It is a non-trivial fact that one can deform each of the double points independently in any of the above
three ways. For example, one can obtain a quartic with this shape:

or the well-known quartic with four kidney shaped components.

Hence the statement is that by choosing appropriate perturbations P , one can create 34 = 81 topo-
logically distinct curves Xs near X .

Around 1880 Klein had the idea to do the same with surfaces in P3. For example, take the four nodal
quartic X = V (f), with f = xyz + xyt+ xzt+ yzt.
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The singular points of X are ordinary double points. In an analogous way, we get by perturbation a
family of surfaces XS −→ S. Locally, near each of the double points, three things can happen.

p

Klein showed that in this way one can generate all possible types of real cubics in three-space.



CHAPTER 1. INTRODUCTION TO DEFORMATION THEORY 7

We want to stress here the fact that it is not clear at all that the local deformations around the
singular points can be globalised to deformations of the whole surface. In fact, for more complicated
examples this will not be the case. Later we will develop tools to handle such questions.

Example 1.2 (A-D-E-singularities). The classification of singularities of hypersurfaces up to right
equivalence starts with the celebrated A-D-E singularities.

name f ∈ C{x, y}
Ak y2 − xk+1 k ≥ 1
Dk x(y2 − xk−2) k ≥ 4
E6 y3 − x4

E7 y3 − x3y
E8 y3 − x5

The germ A0 is smooth, A1 is usually called ordinary double point, A2 the cusp, A3 the tacnode,
etc. The A-D-E surface singularities are obtained by adding a square in a new variable, F = f + z2,
similarly for threefolds, etc.

A 1
A2 D4
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The name of these singularities come from the relation with the Dynkin diagrams with same name.
Consider the a parametrisation φ : C −→ C2 t 7→ (t3, t2) which has the cusp V (x2 − y3) as image.
We can perturb the parametrisation to φS : C× S −→ C2 × S (t, s) 7→ (t3 − ts, t2) Now the image is
V (x2 − y3 + 2sy2 − s2y)

We can do something similar with any of the other singularities in the list. For example E8 t 7→ (t5, t3)
is perturbed to φS(t, s) = (t5 + sP1, t

3 + sP2) When we make an appropriate choice of P1 and P2 the
image can look like:

The name of these singularities come from the relation with the Dynkin diagramswith same name.
We will see later that a singularity with diagram D deforms into singularity with diagram D′ if and
only if D′ is a subdiagram of D.

Example 1.3. Consider a varieties X and XS defined by ideals

I = (f1, f2, . . . , fr) ⊂ k[x1, x2, . . . , xn]

and
IS = (F1, F2, . . . , Fr) ⊂ k[s, x1, x2 . . . , xn]

If fi(x) = F (0, x) we will say that XS is a deformation of X . There is a canonical map π : XS −→ S,
with fibres Xs. The fibre over s = 0 is our original variety X . This state of affairs is usually depicted
by the following diagram

X →֒ XS

↓ ↓
{0} →֒ S
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We also say that XS is a family with fibres Xs.

We illustrate this concept with the following examples

(1) X = V (f), f ∈ k[x1, . . . , xn], XS = V (F ), F = f + s.g ∈ k[s, x1, . . . , xn] The above examples
were of this type.

(2) X = V (f1, f2), f1 = xy, f2 = x2 +y2−z2, XS = V (F1, F2), where F1 = f1 +s, F2 = f2 +s. The
deformation XS −→ S decribes a family of curves in three space. More generally, if codimX =
number of equations, we say that X is a complete intersection.

(3) X = V (I), I = (f1, f2, f3) = (yz, zx, xy) ⊂ k[x, y, z], XS = V (IS), IS = (F1, F2, F3) = (yz −
s, zx− s, xy − s) ⊂ k[s, x, y, z]. The space X consists of the three coordinate axes. The fibres
Xs consist of two points ±(

√
s,
√
s,
√
s). So in this deformation the dimension of the fibre has

changed. The reason is that the relations xf1−yf2, xf1−zf3, yf2−zf3 do not extend to similar
relations between F1, F2andF3. The deformation XS −→ S is not flat. The important concept
of flatness will be explained in 7.

Example 1.4. Not everything that looks like a family is a family!!! Consider a map φ : C −→
C3; t 7→ (t3, t4, t5) = (x, y, z) Let X be the image of this map. It is an exercise to show that X =
V (f1, f2, f3) = V (xz − y2, yz − x3, z2 − x2y) Now consider the family of maps

φS : C× S −→ C3 × S; (t, s) 7→ (t3, t4, t5 + st2) = (x, y, z)

Put XS := Im(φS). Equations for XS :

xz − y2 = st5; yz − x3 = st6 = sx2; z2 − x2y = 2st7 + s2t4 = xsxy + s2y

What to do with the term st5? We cannot express it as an element of the ideal (x, y, z), but we can
do the following:

F1 : x(xz − y2) = st8 = sy2

G1 : y(xz − y2) = st9 = sx3

H1 : z(xz − y2) = st5(t5 + st2) = sx2y + s2xy

We need five equations to describe the image of φS to wit

F1, G1, H1, F2, F3

with F2 = yz − x3 − sx2 and F3 = z2 − x2y = 2sxy − s2y. If we put s = 0 we see that the equations
specialize to xf1, yf1, zf1, f2, f3. So we see that XS −→ S is not a deformation of X !



Chapter 2Riemann surfa
es
The main discrete invariant for smooth compact curves (Riemann surfaces) is the genus. The genus
is a topological invariant, which gives ”the number of holes”.

g=0 g=1 g=2

Curves of genus 0 are all isomorphic to P1: they are called rational curves. They can be embedded in
P2 by an (affine) equation of type:

Eλ : y2 = x(x− 1)(x− λ).

The projection from the point (0 : 0 : 1) on the x axis exhibits the elliptic curve as a 2 : 1 covering of
the x-axis branched over 0, 1,∞ and λ. On the other hand, every 2 : 1 covering of P1 branched over
four points gives an elliptic curve. Permuting the branch points gives that the isomorphism class of
the elliptic curve is unchanged if one replaces λ by either

1− λ, 1/λ, 1/(1− λ), λ/(1 − λ) and (λ− 1)/λ.

The j invariant

j(λ = 28 (λ2 − λ+ 1)3

λ2(λ − 1)2

therefore classifies the elliptic curves up to isomorphism. There exist therefore a one parameter family
of elliptic curves. Similar considerations we have for hyperelliptic curves. These are by definition (non-
rational) curves which admit a 2 : 1 covering of P1, i.e. have an affine equation of type y2 = f(x).
Such a 2 : 1 map, if it exists, is determined up to a automorphism of P1. If the genus is g, the number
of branch points is 2g + 2 by the Hurwitz formula.

It follows that there is a 2g − 1 family of hyperelliptic curves of genus g. As every curve of genus 2 is
hyperelliptic (the canonical system gives such a map), the curves of genus two form a three dimensional
family.

We now consider arbitrary curves, and count the number of parameters. By Riemann-Roch they admit
a finite map of degree at most g+1. For our purposes though, it will be better to consider n− branched

10
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covers, for n > 2g. Any curve of genus g is an n-branced covering of P1. In fact, take any divisor D of
degree n. From Riemann-Roch it follows that there exists a function f ∈ L(D) = {(f) +D ≥ 0} with
pole divisor exactly D. Because the divisor K −D has negative degree, it follows that the dimension
of L(D) is n+ g − 1 This gives a map to P1. Divisor of degree n form an n dimensional family. The
maps to P1 from a fixed Riemann surface therefore form a family of dimension 2n+ g− 1. As a curve
of genus g ≥ 2 can only have a finite number of automorphisms, it follows that there is only a zero
dimensional family of morphisms from a given curve to P1 with given branch locus.

The number of branch points is by the Hurwitz formula equal to 2n + 2g − 2. On the other hand,
given a branch locus B, there exist finitely many Riemann-surfaces which are n− branched covers of
P1 and having branch locus B. The Riemann-surfaces therefore form a family of dimension 2n+ 2g−
2− (2n+ g − 1) = 3g − 3.

Another way to see this number for low genus is by considering the canonical embedding of degree
2g − 2 in Pg−1. For curves of genus g ≥ 3 the canonical linear system defines an embedding precisely
when the curve is non-hyperelliptic. We already saw that the the hyperelliptic curves form a family of
dimension 2g− 1. For example, plane curves of degree four in P2 have genus three, and are canonical.
The quartic curves form a space of dimension 14, and the space of projective transformations of P3 is
8. Therefore, curves of genus three form a family of dimension 6. One shows that a canonical curve
of genus 4 in P3 is the complete intersection of a quadric and a cubic surface in P3. Conversely, the
adjunction formula gives that the intersection of a quadric and a cubic is a curve of genus 4. Counting
parameters again, one finds that curves of genus four form a 12 dimensional family. Similarly one
treats the case of canonical curves of genus 5 in P4.

Let us suppose that there exist a ”universal” family of curves of genus g, C → Mg. (This at least
exists (for g ≥ 2) for those curves which have no automorphism: but in fact for the following we just
need the semi-universality of the family, as to be defined later.) How to compute the dimension of
Mg? Well, take a smooth point p of Mg (assuming that it exists), corresponding to a Riemann-surface
X , and compute the dimension of the tangent space at this point. But the tangent space correspond
to maps from the double point

T := Spec(C[ǫ])→Mg

sending the closed point to p. (We will always assume ǫ2 = 0.) We can restrict our universal family
to the double point, and get a family

XT → T

with special fibre X . So the question becomes: How to classify these families? We take a (finite) open
cover

X = ∪n
i=1Ui

where each Ui is isomorphic to the unit disc. The idea (due to Kodaira and Spencer) is to take a
covering:

XT = ∪n
i=1(Ui × T)

But to define XT we need the transition functions. Let us spell this out: for each i we have local
coordinates zi which give an isomorphism between Ui and a unit disc ∆i: The transition functions
fij := zjz

−1
i are holomorphic on the domain of definition. Of course, whenever defined, we have

fik = fijfjk

We peturb this suituation, i.e. we look at transition functions Fij which now are depending on zj and
ǫ, and such that for ǫ = 0 we get back our fij . We have the condition that on Ui ∩ Uj ∩ Uk:

Fik(zk, t) = Fij(Fjk(zk, ǫ), ǫ)

Writing Fij = fij + ǫgij we get by the chain rule the equation between tangent vectors:

gij
∂

∂zi
= gik

∂

∂zi
+
∂zi

∂zj
gjk

∂

∂zi
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But the last term is just the vector field gjk
∂

∂zj
Therefore, if we define the vector field on Ui ∩ Uj by

θij := gij
∂

∂zi

we have that these satisfy the cocycle condition:

θij − θik + θjk = 0

It is boring to check that this element in first Cech cohomology group H1(X,ΘX) is independent of
the choices made. On the other hand, given a cocyle gij

∂
∂zi

one defines a deformation over T by giving
its transition functions Fij = fij + ǫgijThis deformation turns out to be trivial exactly when we have
a coboundary.

Theorem 2.1. The deformations of a Riemann surface X over T are classified by H1(X,ΘX).

Remark that this argument works also for general compact complex manifolds.

We go back to our compact Riemann surface. The locally free sheaf Θ is the dual of the canonical
sheaf. We therefore have to compute H1(X,K−1). By Serre duality, this space is dual to H0(X,K2) =
L(2K). If the genus is zero, then the degree of 2K is negative, therefore L(2K) = 0. This says that
P1 is rigid. This is as hoped for: the only curve of genus zero is P1. For genus one one has that
K, and therefore 2K is trivial. Therefore, L(2K) is one dimensional: elliptic curves form a family of
dimension one. For higher genus we use Riemann-Roch:

l(2K)− l(K − 2K) = deg(2K) + 1− g

Now deg(K) = 2g − 2, so deg(2K) = 4g − 4. Because g ≥ 2, deg(−K) < 0, hence l(−K) = 0. So
indeed we get l(2K) = 3g − 3.



Chapter 3Deformation problems
Let us look at a problem from linear algebra, the classification of matrices. We consider the space

Mat := Mat(n× n,C) ≈ Cn2

of n×n matrices over a field C. We call two matrices equivalent if the matrices become the same after
a change of base. There is an action of the group GL(n,C), operating on Mat by change of bases:

GL(n,C)×Mat −→Mat , (G,A) 7→ GAG−1

The equivalence classes of matrices are the orbits of this group action.

Normal Form Problem
Find a representative in each equivalence class (=group orbit). Of course, this problem is ” solved ”
by the Jordan normal form.

Moduli Problem
Find a space whose points represent the equivalence classes.

Example 3.1. We look at the family of matrices

(
α s
0 α

)
paramatrized by s: For s = 0 we have

Jordan normal form

(
α 0
0 α

)
, whereas for s 6= 0 we have Jordan normal form

(
α 1
0 α

)
. The

family of matrices

(
α ∗
0 α+ s

)
has Jordan normal form

(
α 0
0 α+ s

)
if s 6= 0.

Suppose there would exist a ”moduli–space” M , with classifiying map

Mat(n× n) −→M .

Consider the following two curves in Mat(2× 2):

As =

(
α 0
0 α+ s

)
.

Bs =

(
α 1
0 α+ s

)
.

For s 6= 0 we see that As ≈ Bs The picture is at follows:

13
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The left hand side shows the two curves in Mat(2 × 2). The arrows indicate that corresponding
points become identified in M , leading to the picture on the left hand side for M . Therefore, if the
moduli–space M would exist, it would be non–Hausdorff.

Problem 3.2 (Normal Form Problem for Families). Find good normal forms for families of
matrices.

Definition 3.3.

• A family of matrices over S, where S is a complex space, is a holomorphic map

A : S −→Mat

It is useful to use the notation AS to denote such a family, and write As := A(s), which we call
fibres of the family.

• If 0 ∈ S is point, we call AS a deformation of A0. Alternatively, we say that A0 is a degeneration
of the general fibre As, s ∈ S.

Most of the time, we are only interested in the behaviour of families near s = 0.

Definition 3.4.

• Two deformations AS and A′S of A0 are called equivalent, if there is a deformation GS of the
identity matrix T0 = In, such that

A′S = GSASG
−1
S .

That is, for all s ∈ S
A′s = GsAsG

−1
s .

• If φ : T −→ S is a map, and AS is a family over S, representent by a map S −→Mat, then the

induced family φ∗AT is just the composition T
φ−→ S −→ Mat. So, φ∗AT is the family over T

with fibre
φ∗At = Aφ(t)

Definition 3.5.

• A deformation AS −→ S of A0 is called versal if every other deformation of A0 is equivalent to
one induced from AS .

• A versal deformation is called universal, if this inducing map is uniquely determined.

• A versal deformation is called miniversal if it is versal of minimal dimension.

Example 3.6.

• Let A0 =

(
a b
c d

)
be any matrix. The space of all 2 × 2 matrices is a versal deformation of

A0.

•
(
α 1
0 α

)
+

(
0 0
s1 s2

)
is a versal deformation. It is even universal.

•
(
α 0
0 α

)
+

(
s1 s2
s3 s4

)
is miniversal.
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There is a simple geometrical method to obtain a versal deformation of a matrix A0: look at the
GL(n)-orbit of the matrix A0. Now take a transversal slice to the orbit.

A0

Orbit

Transversal slice

Intuitively it is clear that any family can be transformmed into a given transversal slice, using the
group action:



Chapter 4Surfa
es I
In the theory of compact complex smooth curves, we have a division in three cases:

• g = 0 . The rational curve P1.

• g = 1 . Elliptic curves

• g ≥ 2 Curves of ”general type”.

Here g is the number of independent 1–forms on the curve. The Euler number (Euler characteristic)
e is related to the genus: e = 2− 2g.

But for surfaces one has different generalizations.

(1) Euler Characteristic of X . This is very computational, in fact it usually suffices to use the
following ”axioms”:

(a) e(X ∪ Y ) = e(X) + e(Y )

(b) e(X × Y ) = e(X) · e(Y )

(c) e(P ) = 1; e(I) = −1, where I is the open interval.

(2) The canonical class. One has the following ”adjunction formulas”:

(a) Let X ⊂ Y be a smooth hypersurface. Then

KX = (KY +X)X

This can be considered as l′Hopital′s rule.

(b) If X is a blow-up of Y , with exceptional divisor E, then:

KX = f∗(KY ) + E

(c) If f : X −→ Y is a double cover of Y , branched over B ⊂ Y then

KX = f∗(KY +B)

Numerical invariants one can extract from the canonical class are

• K2

• dimH0(K) = pg the ”number of two–forms”, also called the geometric genus.

16
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We emphasize that e and K2 are relatively easy to compute. In fact, these are nothing but the familiar
chern numbers of the tangent bundle of the surface.

Remark 4.1. e = c2(θ); K = −c1(θ),. Therefore e = c2 and K2 = c21.

The computation of pg is more subtle.

Further invariants:

(1) Hodge numbers: hp,q = dimHq(X,Ωp), hp,q = hq,p. These make up the Hodge-diamond, which
for surfaces looks like

1
q q

pg h11 pg

q q
1

The number of holomorpic one-forms q = h10 = dimH0(Ω1) is called the irregularity of the
surface.

(2) On H2(X,Z) we have the intersection form:

H2(X,Z)×H2(X,Z) −→ H4(X,Z) = Z

which is a uni–modular quadratic form, whose rank is 2pg + h1,1. The index of this quadratic

form (the number of positive minus the number of negative eigenvalues) is equal to
c2
1−2c2

3 =: τ ,
and therefore:

c21 = K2 is a topogical invariant!

In the simply connected case (irregularity is zero) we get that the rank is equal to c2 − 2. It is
a deep theorem of Friedman that rank and signature of the intersection form, and hence e and
K2, is a complete topological invariant!

One has the following ”rough classification” of surfaces:

• K ”negative”: H0(nK) = 0 for n >> 0

• K ”zero”: H0(nK) is bounded

• K ”positive”: H0(nK)→∞

We now consider this first case K negative

If K is negative, then there is a rational curve C on the surface with C2 = 0. Then the surface has a
P1–fibration. This is an example of deforming a curve in a surface, see ???

Riemann-Roch for Surfaces:

χ(O(D)) := h0(D)− h1(D) + h2(D) =
1

2
D(D −K) + χ(O)

were χ(O) = 1− q + pg. This can be computed from the Noether formula

χ(O) =
c21 + c2

12
.

Serre-duality tells us: h2(D) = h0(K −D).

Suppose X is a surface with two intersecting (−1)–curves, as suggested in the following picture:
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-1

-1

We have KC + C2 = −2, h0(C) + h2(C) ≥ χ(O) + 1, which implies that the curve C moves in a
linear system =⇒ the surface is ruled. So if X is not ruled, (−1) curves do not intersect. You always
can blow down (−1)-curves. After you have done that, you have what is called a minimal ruled
surface. Such ruled surfaces without (−1) curves are P1 bundles over a curve C, and are of the type
P(E), where E is a rank two vector bundle on C. E is determined up to tensoring with a line bundle
L, that is P(E) ≃ P(E ⊗ L).

For example, for C = P1 and E = O ⊕ O(n) we get the Hirzebruch surface Fn. These surfaces
have the following peculiarity: the surface Fn+2 deforms into Fn, so Fn is diffeomorphic to Fm if
n = m mod 2. The deformation of F2 into F0 is the phenomenon of simultaneous resolution of the A1

surface singularity, see ???:

(-2)

F F02 A1

In general, let us blow up a point on a fibre of a minimal ruled surface. We get two (−1)-curves:

C

(-1)
(-1)



CHAPTER 4. SURFACES I 19

We can blow down the other (−1) curve and get another minimal ruled surface. Hence from a
ruled surface X −→ P1 we get X ′ −→ P1. The transition from X to X ′ is called an elementary
transformation. One can perform a finite sequence of such elementary transformations that converts
X into a product

C

P
1

The conclusion of all this is, that when the pluri-genus Pn := H0(nK) = 0 for all n ≥ 0, then X is
birational to a product C × P1. In fact one has:

• P12 = 0 ⇒ Pn = 0 for all n. If q = 0, then P2 = 0 implies already Pn = 0. The surface X is
rational.



Chapter 5Surfa
es II
Now we consider the case K zero , meaning that H0(nK) remains bounded. In this case, there exist

a covering X̃ −→ X with K = 0 , h0(nK) = 0, 1.

A cubic P2 is an elliptic curve, C/Λ and as such admits two different generalisations to surfaces. We
can consider quartic surfaces in P3. These are K3-surfaces and have q = 0. Or we can consider complex
tori C2/Λ, which have q = 2. The complex torus has Euler number 0, but what is the Euler number
of the Quartic in P3? We take a generic pencil of hyperplane sections Xt. Each Xt is a plane quartic
curve. The generic Xt will be a smooth genus three curve, hence e(Xt) = −4. When a hyperplane of
the pencil becomes tangent to the surface, we get a nodal quartic, which has e(Xs) = −3. Let n be
the number of such nodal quartics. When we blow up the quartic in the points of intersection with
the base locus of the pencil we get a surface X ′, fibred over P1, hence:

e(X ′) = e(Xt)(e(P
1)− n) + n.e(Xs) = −4(2− n)− 3n = n− 8

What is n? It is the number of intersection points of the surface with two generic polars, so 4.3.3 = 36.
We conclude that e(X) = 24.
One also can compute this from Noethers formula

c21 + c2
12

=
c2
12

= 1− q + pg

As a smooth hypersurface in P3 is simply connected, one has q = 0. Moreover, pg = 1 as KX = 0,
so we get c2 = 24. There is an interesting relation between tori and K3-surfaces. When we divide
the torus C2/Λ by the involution (z1, z2) 7→ (−z1,−z2), we get a surface X with 16 A1-singularities.
Resolving this gives us a K3 surface with 16 disjoint (−2) curves. Such surfaces are called Kummer
surfaces, and all arise in this way.

Let us turn to the case K positive . The first case is when H0(nK) ∼ n. In this case X admits

a fibration with elliptic curves. In general, a surface X with a map X −→ P1 with generic fibre an
elliptic curve E is called an elliptic surface. A deformation of such an elliptic surface is not necessarily
elliptic. An elliptic surface has K = rE. The number r can be negative e.g. P2 blown up in 9 points.
When we wiggle the points the elliptic fibration disappears: the surface is no longer elliptic. Honestly
elliptic surfaces have K = rE with r > 0. This class is stable under deformation.

Rest of the surfaces: general type. Let us consider the pairs (c21, c2) for minimal surfaces (no (−1)
curves). For these the following inequalities hold:

2χ− 6 ≤ c21 ≤ 3c2 = 9χ

20
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Ruled surfaces: c21 = 8(1− g), χ = (1− g)
Godeaux surfaces: c21 = 1, χ = 1.

How to constructs interesting surfaces? Look at surfaces of degree n in P3. The canonical class is
(n − 4)H . For n < 4 the surface is rational, for n = 4 we get K3 and for n ≥ 5 we get surfaces
of general type. Similarly, one can consider complete interesections in products of projective spaces,
compute invariants, etc. Other examples arise by imposing singularities. We consider hypersurfaces
with certain types of singularities and relate c21 and c2 of the minimal resolution with the general
smooth surface. So let Xt degenerate into X0. Assume for simplicity that X0 has a single singular
point p. Consider a resolution X̃ −→ X0 of the special fibre. So we have π−1(X0−{p}) ≈ X̃−π−1(p).
If we let p be the point (0 : 0 : 0 : 1) then the affine equation of X takes the form F = Fm +Fm+1 + . . .
where the Fi are homogeneous forms of degree i in x, y, z. m, the degree of the lowest order term is
called the multiplicity of the singular point. If m = 2, and F2 describes a non-degenerate quadric in
three variables, then p is called an ordianry double point. When we blow up P3 at the point p, the
exceptional P2 intersects the strict transform of the surface in the conic F2 = 0.

This curve has self-intersection −2 on the strict transform X̃.
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Similarly, when m = 3, the strict transform of the surface intersects the exceptional P2 in a cubic
curve F3 = 0. We speak of an ordinary triple-point if this cubic is smooth (Ẽ6- singularity, see ????)

In general, one can resolve the singularity by repeating this process of blowing up. In the end one
arrives at a smooth surface, containing some configurations of curves that are contracted when mapped
back into P3.

Knowing these resolution graphs, it is straightforward to relate e(X0) and e(X̃). To see the relation
between e(X0) and e(X) we proceed as follows: take general coordinates so that T = 0 intersects
the surface transversely along a smooth curve. The function F (X,Y, Z, T )/T n defines a fibration
P3 \ {T = 0} =: C3 −→ C, whose fibre over c ∈ C is the level surface F (X,Y, Z, T )− cT n, which is
nothing but the affine level set f(X,Y, Z) = c, where f(X,Y, Z) = F (X,Y, Z, 1). For general c this
will be smooth, but at the points where

∂f/∂X = ∂f/∂Y = ∂f/∂Z ,

the fibres will aquire singularities. If we count each such point with multiplicity

µ = dim C[[x, y, z]]/(∂xf, ∂yf, ∂zf)

we have in total (n− 1)3 such points. We can assume that all singulartities not on the zero fibre are
ordinary double points. From

1 = e(C3) = e(X)(2− (n− 1)3) + (n− 1)3(e(X)− 1)

it follows that a singularity with Milnor number µ decreases the Euler number always by µ, so that

e(X0) = e(X)− µ.

The canonical divisor of X0 is −4H + nH |X0 = (n− 4)H |X0 by adjunction. The canonical divisor of

X̃ is given as

K eX = KX0
+

∑
αiEi
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where i labels the exceptional curves in the resolution. The coefficients αi can be computed using the
adjunction formula for Ei ⊂ X̃:

K eXEi + E2
i = 2g(Ei)− 2

This produces a system of linear equations for the αi, which has a unique solution, because the matrix
(Ei ·Ej) is negative definite.

So we can compute K eX and hence the number K2
eX
.



Chapter 6A{D{E singularities
Let f : (Cn, 0) −→ (C, 0) be a germ of an analytic function. Such germs form a ring, which we denote
by On. This ring On is in fact isomorphic to the power series ring C{z1, . . . , zn}. We want to classify
singularities, up to a sensible equivalence relation. There are several possibilities:

Definition 6.1.

• f and g are called right equivalent, if there is an analytic automorphism h ∈ Aut(Cn, 0) such
that f = g ◦ h, that is the following diagram commutes:

(Cn, 0)
f−→ (C, 0)

yh ‖

(Cn, 0)
g−→ (C, 0)

• f and g are called left-right equivalent, if there is an analytic automorphism h ∈ Aut(Cn, 0) and
an automorphism ϕ ∈ Aut(C, 0) such that ϕ◦f = g ◦h, that is the following diagram commutes:

(Cn, 0)
f−→ (C, 0)

yh

yϕ

(Cn, 0)
g−→ (C, 0)

• f and g are called contact equivalent, if there is an analytic automorphism h ∈ Aut(Cn, 0) and
a function u: (Cn, 0) → (C∗, 0) (so u is a unit in On such that u · f = g ◦ h. This is equivalent
to the condition that h maps the germ (f−1(0), 0) isomorphically onto (g−1(0), 0)

In any case, we have a group G acting on On, and we want to classify the orbits, similarly to the case
of matrices in Chapter 3. We only have one problem:

O
n

is an infinite dimensional vector-space

In the case of isolated singularities, one can circumvent this problem by using the finite determinacy
theorem.

Theorem 6.2 (Finite determinacy Theorem). Let f ∈ On have an isolated singularity. Then
there exists a k , such that for all g ∈ mk the function f + g is right-equivalent to f .

In fact in the finite determinacy theorem, it suffices to take k ≥ µ(f) + 1, µ(f) is the Milnor number.
This shows that for any particular f with isolated singularity, we may look at the induced group
action on O/mk, which is a finite dimensional vector space.

24
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Definition 6.3. (X, 0) is called simple, if such transversal slices intersects only finitely many orbits.
Equivalently, (X, 0) deforms into finitely many isomorphism classes of singularities.

Example 6.4. Consider the singularity given by xy(y2 − x2) + λx4 = 0

The cross-ratio of the lines changes. This leads to a continuous family of non-isomorphic singularities.
(Moduli).

Theorem 6.5 (Arnol’d). A Hypersurface singularity is simple if and only if it is of type A–D–E.

Definition 6.6. (X, 0) is called adjacent to (Y, 0) if there exists a one–parameter family XS → S,
0 ∈ S, such that

(X0, 0) ≃ (X, 0)

(Xs, 0) ≃ (Y, 0) for s 6= 0 small.

Notation: (X, 0) −→ (Y, 0).

For example, we have A1 ←− A2, as the formula y2 − x2(x − s) shows. This is illustrated by the
following picture:

A2

s

A1

The following diagram gives the all the adjacencies for the simple singularities.
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A1

D4

E 6

D7

A A A4 A A A2 3 5 6 7

D D5 6

E E7 8

D8

More generally, one can ask how many singularities, and of which type, might appear on a general
fibre of a deformation of a (simple) singularity. In general, this is a very difficult question, but for
simple singularities there is a beautiful answer.

Example 6.7. Consider the deformation given by the following equation:

(y − s)(x2 − y2)− z2 = 0

where s is the deformation parameter. It has on the zero fibre one D4 singularity, on the general fibre
there are s A1 singularities. The picture is at follows.

The answer to the question above is in terms of the Dynkin diagrams. We proceed with the above
example. The Dynkin diagram is:

By throwing away some vertices, and all edges which are adjacent to these vertices, one gets a (in
general non connected) graph wiith say p components. This graph we may interprete as p Dynkin
diagrams. In our example of the D4 we delete the middle vertex and the corresponding edges:

In this way we get the Dynkin diagram of three A1 singularities.

Theorem 6.8. Consider a A–D–E singularity (X, 0). Let XS −→ S be a 1-parameter deformation
of (X, 0), with (simple) singularities X1 . . . Xp on the general fibre. Let Γi, i = 0, . . . , p be the Dynkin
diagram of Xi. Then it is possible by deleting some vertices of Γ0 and the adjacent edges to these
vertices to get a graph Γ with p components C1, . . . , Dp, such that Ci is the Dynkin diagram of Xi for
i = 1, . . . , p.

Conversely, if one has such an operation on the graph there exists a 1-parameter deformation of (X, 0)
with corresponding singularities in the general fibre.
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A (conceptual) proof of this theorem will be given in ??



Chapter 7Flatness
In this part we consider singularities (that is, germs of analytic spaces) and their deformations. Such
a singularity is is given as the zero-set of a set of analytic function:

f1(x) = . . . = fk(x) = 0

We consider deformations
F1(x, s) = . . . = Fk(x, s) = 0

where Fi(x, 0) = fi(x) for i = 1, . . . k. We start with recalling the example in 1.3 of a family which is
not flat.

Example 7.1. Let XS −→ S be a a family which is defined by

F1 = xy − s = 0
F2 = xz − s = 0
F3 = yz − s = 0

Although this is a variety defined in 4-space, we would like to imagine the situation by the following
picture:

ss = 0 s = 0

The problem here is that s is zero-divisor of C{x, y, z, s}/(F1, F2, F3). The total space XS has four
components, of which three are in the fibre s = 0. This fibre consists of the three coordinate axes.
We can therefore decompose XS :

XS = X0 ∪X1

28
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where X0 are the three coordinate axes, and X1 is the parabola. Take a function f , vanishing on
X1, but not on X0 (the existence of such a function goes under the name “prime avoidance”). Then
obviously:

s · f = 0 on XS but s, f 6= 0 ∈ OXS

expressing the fact that s is a zero-divisor. In fact the so-called active lemma of analytic geometry
can be restated as:

Lemma 7.2. s is zero-divisor ⇐⇒ there exists a component of XS in the zero-fibre.

The above example hopefully makes clear to the reader that for a ”nice” one parameter family (with
parameter s), one should impose the condition that s is a nonzero-divisor. This is called flatness:

Definition 7.3. A C{s}-module M is called flat iff s is a nonzero-divisor of M .

For example a finitely generated C{s}-module M is flat if and only if M is free. This is a direct
consequence of the classification Theorem of finitely generated modules over a principal ideal domain.

It turns out that is not so easy at all to construct (non-trivial) one parameter flat deformations of
singularities. It is natural to construct deformations by ”power-series expansion. That is construct
deformations over Spec(C[s]/s2), then try to lift to Spec(C[s]/s3), etcetera. But then one has the
problem of defining, when a module is a flat C[s]/s2-module, as s is a zero-divisor of C[s]/s2. So we
need to give a different definition of flatness of C{s}-module, which gives a good generalization to
rings with nilpotents. There are two reformulations.

Lemma 7.4. Let S be the germ of a smooth 1-dimensional space and consider a deformation of X
as above. Then the deformation is flat (that is, s is a nonzero-divisor) if and only if for every relation
between the fi:

f1r1 + . . .+ fkrk = 0

we can find a lift Ri(x, s) with Ri(x, 0) = ri(x) with

F1R1 + . . .+ FkRk = 0

Proof. The proof is elementary, but let us spell it out. Suppose that s is a nonzero-divisor, and take
a relation

∑
firi = 0. Take any lift R′i(x, s) of the ri, and look at:

F1R
′
1 + . . .+ FkR

′
k

This might not be zero, but we now it is if we plug in s = 0. This show that this expression is divisible
by s:

F1R
′
1 + . . .+ FkR

′
k = sΦ

This expression says that sΦ = 0 ∈ OXS
. As s is a nonzero-divisor it follows that Φ = 0 ∈ OXS

, that
is, Φ =

∑
αiFi for some αi. Now put Ri = R′i − sαi. It follows that

F1R1 + . . .+ FkRk = 0

so we found a lift of the ri. On the other hand, suppose that we can lift any relation. We need to
show that s is a nonzero-divisor. So suppose that sΦ = 0 ∈ OXS

, that is

sΦ = F1R1 + . . .+RkFkRk

Putting s = 0 we get a relation
∑
firi = 0, which by assumption can be lifted to a relation

∑
FiR

′
i = 0.

Then
sΦ =

∑
Fi(Ri −R′i)
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As both Ri and R′i are lifts of the ri, it follows that Ri −R′i is divisible by s. Hence the power-series
Ri−R′

i

s exists. Because in the power-series ring s is a nonzero-divisor it follows that:

Φ =
∑

Fi
Ri −R′i

s

expressing the fact that Φ = OXS
, which is what we had to show.

In commutative algebra there is a different definition of flatness. To explain this, take R to be a commutative
ring with 1, and let M be an R-module. Then M is called flat if for all exact sequences of R-modules:

0 −→ N
′ −→ N

the sequence
0 −→ N

′ ⊗ M −→ N ⊗ M

is also exact. To put it in another way, the functor −⊗ M is a (left) exact functor.

Example 7.5. Take R = C{s}, and M an R-module. Then

0 −→ C{s} −→ C{s}

is exact. If M is flat, it follows that
0 −→ M

·s

−→ M

is exact, meaning that s is a nonzero-divisor of M .

For the case we are interested in, both notions of flatness coincide.



Chapter 8The Language of Fibred Categories
We have been discussing by way of examples various types of families XS over S and associated
deformation problems.

(1) families of affine varieties over S.

(2) families of maps over S.

(3) families of Riemann surfaces over S.

(4) families of matrices over S.

(5) families of singularities over S.

(6) families of singularities, flat over S.

(7) families of schemes, flat over S.

(8) families of analytic spaces, flat over S..

(9) families of line bundles over S.

(10) families of curves in a given X over S..

We used notations like XS −→ S in each of these situations.

common feature The notion of induced family: Given XS over S and φ : T −→ S is a map, then
there exists something called φ∗(XS), a family over T . In each of these cases one can formulate the
notions of a versal deformation and the problem as to its existence can be posed.
There is a a precise but unspecific language that covers all these cases in a single formalism:

fibred categories

It sounds difficult, but it is not; as with all category stuff, it is basically ”empty” 1. We will have to
deal with two categories. A category F, whose objects make up the families of objects we want to
consider, and a category C, whose objects correspond to the parameter spaces we have our families
over. There is a projection functor

p : F −→ C

that assigns to each family XS ∈ Ob(F) the parameter space S ∈ Ob(C) it is over.
Notation: Let p : F −→ C a functor between categories.

1Siegel once refered to modern algebraic geometry in general as the theory of the empty set

31
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• For S ∈ Ob(C) we put: F (S) := {X ∈ Ob(F) | p(X) = S}. This is the set of objects over S.

• For φ ∈ Mor(C) we put: F (φ) := {ψ ∈ Mor(F) | p∗φ = φ}. This is the set of morphisms over
φ.

Definition 8.1. p : F −→ C is called a fibred category if

(1) Existence of pull-backs: For all φ : T −→ S ∈ Ob(C) and all XS ∈ F (S) there exists
φ : XT −→ XS ∈ F (φ) ⊂Mor(F)

(2) Strong uniqueness of pull-backs: For all diagrams

T ′

  @
@

@@
@

@
@

��
T // S

and XS ∈ F (S), there is a unique arrow X ′T −→ XT making a commutative diagram

ST ′

!!D
DD

DD
DD

D

��
XT

// XS

Corollary 8.2. If we define the fibre category F(S) as the category with objects F (S) (the objects of
F over S, and morphisms F (IdS) (the morphisms in F over the identity map, IdS : S −→ S), then
all morphisms in F(S) are isomorphisms. Such a category is called a groupoid.2

The language of fibred categories sets up the appropriate categorial way to discuss families. What
about the categorial formulation of deformation? Let X0 ∈ Ob(F), and put 0 = p(X0) ∈ Ob(C).

Definition 8.3. The deformation category of X0 is the category FX0
, which has

• Ob(FX0
): morphisms in F X0 −→ XS .

• Mor(FX0
): diagrams

XS

��
X0

=={{{{{{{{
// XT

The obvious functor FX0
−→ C represents FX0

as a fibred category. It has a special property, namely
that the fibre category

FX0
(0)

is a groupoid with one object, hence it is a group, to know, the group Aut(X0) of automorphisms of
the object X0 in F.

From the deformation category of an object X0 one obtains a deformation functor

DF : C −→ (Sets)

2Any group can be made into a category with one object, and morphisms corresponding to the elements of the group,
with composition in the category corresponding to multiplication in the group. A groupoid is a natural generalisation to
categories with more objects. Every path connected topological space X has a fundamental groupoid: objects: points
of X, morphisms from a to b: homotopy classes of paths from a to b. All groupoids are equivalent to such fundamental
groupoids.
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which associates to S ∈ Ob(C) the set DF (S) of isomorphism classes of objects in FX0
(S). It is

contravariant functor, because if T
φ−→ S is a morphism in C, then we have a map F (S) −→ F (T ),

by pulling back XS ∈ F (S) to φ∗(XS) ∈ F (T ).

In ?? we will discuss such functors more extensively.

In the literature one find often the dual notion of cofibred category, It is obtained by reversing arrows
and is confusing, but more appropriate when one works with rings, rather than spaces.

Example 8.4. Cofibred category of Rings.

For deformation problems, there are five popular base categories of spaces C. It is easier to describe
the opposite categories of rings. We fix a field k, which is C.

(1) Copp = (Art), the category of artinian k-algebras.

(2) Copp = (Ârt), the category of complete local k-algebras.

(3) Copp = (An), the category of analytic local rings.

(4) Copp = (Hens), the category of local henselian k-algebras.

(5) Copp = (loc), the category of local k-algebras.

From now on, we suppose that C is one of these categories.

Definition 8.5. Let p : F −→ C be a fibred categrory.

• An object XS ∈ F (S) is called versal if the following holds: for all φ : T −→ S and ψ : T →֒
T ′ ∈Mor(C) and all XT −→ XT ′ ∈ F (ψ), XT −→ XS ∈ F (ψ), the following diagram

XT

��

// XT ′

∃||zz
zz

zz
zz

XS

can be completed.

• XS is called formally versal if the above condition holds for all T ∈ T ′ in (Art)opp (which is a
sub-category of each of the five popular base categories.)

• XS is called (formally) semi-universal if

If T = {0} the versality just says that all XT ′ over T ′ are induced by some map T ′ −→ S. So, from
a versal family all other families can be induced. This is sometimes taken as a definition of versality,
but of course in praxis one needs this stronger notion.3

3It would be interesting to know a geometrically meaningful example where the two notions differ.



Chapter 9S
hlessinger's Theorem
Let us consider a fibred category p : F −→ C over the category C = (Art)opp of artin spaces. Given
an X0 ∈ Ob(F), 0 := p(X0), we defined a deformation category FX0

and the associated deformation
functor

F : (Art) −→ (Sets)

which associates a ring R from (Art) to the set of isomorphism classes of deformations of X0 over
S = Spec(R).

One has F (k) = [X0], F (k[ǫ]) = deformations of X0 over T = spec(k[ǫ]/(ǫ2)). Analogously,
F (k[ǫ]/(ǫ)10) is the set of deformations of X0 to order 10.

We are going to stretch generality once more. Now assume we have any covariant functor F : (Art) −→
(Sets). We will refer to elements of the set F (R) just as ’deformations’ in some very general sense.

One can extend F to a functor F̂ : (̂Art) −→ (Sets) by putting

F̂ (R) := lim
←−

F (R/mk)

ForR from (Art), clearly F (R) = F̂ (R). For a general non-artinian ringR, F̂ (R) consists of compatible
systems of deformations (ξk ∈ F (R/mk+1))k∈N in the tower

. . . −→ F (R/m4) −→ F (R/m3) −→ F (R/m2) −→ F (R/m)

We call such objects formal deformations1

Loosly speaking, a versal object was an object from which all other objects can be obtined by inducing.
We introduce this concept here in the setting of functors.

Definition 9.1. A formal deformation X̂ ∈ F̂ (R), with R from (̂Art) is called versal if for all ψ :

A′ −→ A from (Art), all φ : R −→ A and all XA′ ∈ F (A′) with ψ∗(XA′) = (φ∗(X̂)), there exist a

φ′ : R −→ A′, such that XA′ = (φ′)∗(X̂).

This looks cumbersome, but is a direct translation of ??

Functors as generalised spaces

For R from (̂Art) one has a canonical functor

hR : (Art) −→ (Set)

1It should be stressed here that in many geometrically meaningful situations one starts with a functor already defined

on a category of rings containing (̂Art). In that case one should not confuse F (R) and bF (R) for R not from (Art).

34



CHAPTER 9. SCHLESSINGER’S THEOREM 35

by putting hR(S) := Hom(R,S). In this way, spaces Spec(R) correspond to certain functors hR. Such
functors are called representable functors, and a functor F of the form hR is said to be represented by
the ring R (or the space Spec(R)). One can try to extend geometrical notions from spaces, or rings to
more general functors. It is useful to think of a functor as some kind of generalised space. A morphism
R′ −→ R between rings induces for each S a map Hom(R,S) −→ Hom(R′, S) in a functorial way, so
we obtain a transformation of functors:

hR −→ hR′

So the transformations of functors generalise maps between spaces. Note also that hR(k[ǫ]) =
Hom(R, k[ǫ]) = (m/m2)∗ is the Zariski tangent space to Spec(R). So in general we define the tangent
space of a functor F to be just TF := F (k[ǫ]).

It is an astonishing fact that in this hopeless generality one can make a sensible definition of a smooth
transformation of functors. To say that f : F −→ G is a transformation of functors means that for
any morphism φ : A′ −→ A we get a canonical commutative diagram

F (A′)

F (φ)

��

f(A′) // G(A′)

G(φ)

��
F (A)

f(A) // G(A)

and map F (A′) −→ G(A′)×G(A) F (A) := {(a, b) ∈ G(A′)× F (A) | G(φ)(a) = f(A)(b)}

Definition 9.2. A transformation f : F −→ G of functors is called smooth, if for all A′ ։ A the
canonical map F (A′) −→ G(A′)×G(A) F (A) is surjective.

It makes sense to call this smoothness, because of the following theorem.

Theorem 9.3. hR −→ hS is smooth if and only if R = S[[x]]

Given an X̂ ∈ F̂ (R), one obtains a transformation of functors

PB(X̂) : hR −→ F

obtained by pulling-back: To ψ : R −→ A from hR(A) we associate ψ∗(X̂) ∈ F (A). Looking at the
diagrams defining smoothness and versality we see that:

Proposition 9.4. X̂ is versal if and only if PB(X̂) is a smooth transformation.

To construct a formal object having formally some property like this is based on the ideas of small
extensions and glueing

Definition 9.5.

(1) An exact sequence
0 −→ V −→ R′ −→ R −→ 0

is called a small extension if mR′V = 0. In that case V aquires the structure of an k-vector
space. Archetypical example is the sequence

0 −→ (ǫk/ǫk+1) −→ k[ǫ]/(ǫk+1) −→ k[ǫ]/(ǫk) −→ 0,

or more generally the sequence

0 −→ (mk/mk+1) −→ R/(mk+1) −→ R/(mk) −→ 0.
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(2) If we have a diagram

R′
α // R

R′′

β

OO

there exists a fibred sum-ring

R′ ×R R′′ := {(a, b) ∈ R′ ×R′′ | α(a) = β(b)

with componentwise addition and multiplication. Geometrically, Spec(R′×RR
′′) is obtained by

glueing Spec(R′) and Spec(R′′) along Spec(R).

Spec(R’)

Spec(R’’)

Spec(R)

Any such fibre-sum diagram

R′ // R

R′′

OO

induces for a functor F a canonical map

can : F (R′ ×R R′′) −→ F (R′)×F (R) F (R′′)

Theorem 9.6. Assume a functor F satisfies the following three conditions:
(H1): For all diagrams of the form

R′ // k

k[ǫ]

OO

the map can is a bijection.
(H2) For any diagram

R′ // R

R′′

OO

with R′ −→ R a small surjection, the map can is a surjection.
(H3) dimk(TF ) <∞.



CHAPTER 9. SCHLESSINGER’S THEOREM 37

Then there exists a hull, or semi-universal formal object X̃ ∈ F̃ (R) for F , that is, the map

PB(X̂) : hR −→ F

is smooth and induces an isomorphism on tangent spaces.

Comment 9.7. Consider the glueing of two copies of T. There is a diagram

k[ǫ]

��

// k

k[ǫ]×k k[ǫ] // k[ǫ]

OO

The ring k[ǫ] ×k k[ǫ] is isomorphic to the ring k[ǫ, ǫ′]/(ǫ2, ǫǫ′, (ǫ′)2) via the map (a + ǫb, a + ǫc) 7→
(a+ǫb+ǫ′c). Also, there is a map add : k[ǫ]×kk[ǫ] −→ k[ǫ] defined by add(a+ǫb, a+ǫc) = (a+ǫ(b+c)).
For a functor that satisifies (H1) one obtains a map

F (k[ǫ])kF (k[ǫ])
≈←− F (k[ǫ]×k k[ǫ])

F (add)−→ F (k[ǫ], )

that is, a map
TF ×k TF −→ TF

In this way, TF aquires a natural structure of a k-vector space and condition (H3) makes sense.

Idea of the construction

(1) Choose a k-basis θ1, θ2,−→, θτ for the vector space TF .

(2) Consider the formal power series ring P := k[[T1, T2,−→ Tτ ]].

(3) We are going to define inductively ideals In ⊂ P and objects Xn ∈ F (Sn), Sn := P/In, such
that

(4) I1 = m2, S1 = P/m2 = k[ǫ]×k kǫ×k · · ·k[ǫ], X1 = θ1 × θ2 × · · · θτ ∈ TF × · · ·TF = F (S1).

(5) Assume that In and Xn have been constructed. Put

L = {I ⊂ P | mIn ⊂ J ⊂ In&Xn lifts to F (P/J)}
This set of ideals is closed under intersection: given J1 and J2 in L , we can form the following
fibre-sum diagram:

P/J1
α // P/In

P/J1 ∩ J2

OO

// P/J2

β

OO

as P/J1 ∩ J2 = P/J1 ×P/In
P/J2. Note that both α and β are small surjections, so by (H2) we

can lift anything over P/J1 and P/J2 that restricts to the same over P/In to something over
P/J1 ∩ J2.

(6) Let In+1 be the minimal element of L and let Xn+1 be any lift of Xn over Sn+1 = P/In+1.

(7) We can go on with this process for ever. In this way we find a compatible system of deformations,

that is, an element of X̂ ∈ F̂ (R) with R =
lim← n (P/In)!

It remains to check that the object so constructed is indeed versal in the above sense.

Theorem 9.8. Let X0 be any scheme over k. The deformation functor Def(X0), isomorphism
classes of flat deformations of X0, satisfies (H1) and (H2). Moreover, if dimT (Def(X0)) < ∞,
then Def(X0) has a hull.



Chapter 10T 1 and T 2 for Singularities
Infinitesimal Deformations

In this part we work in the formal category. Let f ∈ k[[x1, . . . , xn]].

Definition 10.1. We say that f has an isolated singularity iff dim k[[x1, . . . , xn]]/(∂1f, . . . , ∂nf, f) <
∞

We want to understand all flat deformations over the double point T = Spec C[ǫ]/(ǫ2). We denote
this set by DefX(T). f + ǫg is flat exactly when we can lift the relations. But there is no non-trivial
relation between one f , so we can take all g ∈ k[[x1, . . . , xn]]. We have to divide out by infinitesimal
automorphisms, which induce the identity for ǫ = 0. These are given by:

xj 7→ xj + ǫαj

for j = 1, . . . , n, and αj ∈ k[[x1, . . . , xn]] can be arbitrary. This leads to the following deformation of
f :

f(x1 + ǫα1, . . . xn + ǫαn) = f(x) + ǫ
∑

αj
∂f

∂xj

(Recall that ǫ2 = 0.) So we see that the trivial deformations are generated by the the derivations Θ.
We therefore get:

Theorem 10.2. For a hypersurface singularity X = V (f) we have

T 1
X = DefX(T) ∼= k[[x1, . . . , xn]]/(∂1f, . . . , ∂nf, f)

We therefore see that T 1
X is finite dimensional exactly when f has an isolated singularity.

We now consider more general X defined by (f1, . . . , fk) ⊂ k[[x]] = k[[x1, . . . , xn]] and try to under-
stand the flat deformations over the double point T 1

X = DefX(T) for those. We take the Ansatz:

(f1 + ǫg1, . . . , fk + ǫgk)

For which, assuming it is flat, we can lift the relations. So let such a relation be given:

f1r1 + . . .+ fkrk = 0

and let the lift be given by ri + ǫsi:

(f1 + ǫg1)(r1 + ǫs1) + . . .+ (fk + ǫgk)(rk + ǫsk) = 0

38
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of course calculated modulo ǫ2: Multiplying out we get:
∑
firi + ǫ

∑
(giri +fisi). From this it follows

that
∑
giri ∈ I := (f1, . . . , fk), that is, zero in OXS

. It follows that the map:

I −→ OX fi 7→ gi

is well defined! Therefore, to every flat deformation over T we can assign an element of NX :=
Hom(I,OX) = Hom(I/I2,OX). This argument works the other way around to: every φ ∈ NX gives
rise to a flat deformation over T, given by f1 + ǫφ(f1), . . . , fk + ǫφ(fk).

We still have to divide out by the automorphisms, which turn out, as in the hypersurface case to be
generated by the derivations. In fact we have a map:

Θ −→ NX , θ 7→ (fi 7→ θ(fi) = gi)

It is easy to see that this is well-defined. Let r1f1 + . . .+ fkrk = 0. Applying θ and using the Leibnitz
rule we get

∑
i fiθ(ri) + riθ(fi) = 0, showing that

∑
rigi ∈ I. Therefore:

Theorem 10.3.

T 1
X = NX/(Im(Θ→ NX)

Obstructions

We now turn our the the following question.

Problem 10.4. Suppose given a flat deformation of X over T given by

(f1 + ǫg1, . . . , fk + ǫgk)

Does there exist a flat deformation of X over Spec(C[ǫ]/(ǫ3)) inducing the given flat deformation over
T.

To put it in another way, can the family be lifted to third order?

In general, the answer to this question is NO, but it is not so easy to give examples. What we want
to do know, is to show that it can be solved from a computational point of view.

As by assumption our family is flat over T we know that for each relation (r1, . . . , rk) with
∑
firi = 0

we can find (s1, . . . , sk) (depending of course on the relation) such that

(f1 + ǫg1)(r1 + ǫs1) + . . .+ (fk + ǫgk)(rk + ǫsk) = 0 modulo ǫ2

There is no reason at all that this also holds modulo ǫ3. We want to lift to third order, that is we
want to find h1, . . . , hk such that our family to third order is given by:

(f1 + ǫg1 + ǫ2h1, . . . , (fk + ǫgk + ǫ2hk)(∗)

and is flat. So we have to find for all relations (r1, . . . , rk) between the fi a lift ri + ǫsi + ǫ2ti with

∑
(fi + ǫgi + ǫ2hi)(ri + ǫsi + ǫ2ti) = 0 modulo ǫ3(∗∗)

Lemma 10.5. Given h1, . . . , hk, the problem of lifting a relation (r1, . . . , rk) to third order is inde-
pendent of the particular si chosen, as long as it satisfies equation (∗)

Proof. Let s′i be another lift to second order satisfying (∗). Then

∑
(fi + ǫgi)(ri + ǫsi) =

∑
((fi + ǫgi)(ri + ǫs′i)
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modulo ǫ2. It follows that
∑
f1(si − s′i) = 0, that is s1 − s′1, . . . , sk − s′k is a relation between the fi.

As by assumption the fi + epsilongi is a flat deformation over T, it follows that the relation can be
lifted. Therefore there exis u1, . . . , uk such that

∑
gi(si − s′i) +

∑
fiui = 0

Given h1, . . . , hk, suppose that we can lift the relation with si. Then we can find t1, . . . , tk such that
(∗∗) holds, or by looking at ǫ2-term:

∑
(hiri + gisi + tihi) = 0.

The question is whether we can find t′i such that
∑

(hiri + gis
′
i + t′ihi) = 0.

By subtracting this is equivalent to finding t′i with
∑

fi(si − s′i) +
∑

gi(ti − t′i) = 0

This is possible by defining t′i = ti − ui for i = 1, . . . , k.

Coming back to the lifting question, we want the following equation to hold:
∑

(rihi + gisi + tifi) = 0

We can also read this as: ∑
(rihi + gisi) = 0 ∈ OX(†)

as then it is possible to find the ti as above. Putting R to be te module of relations between the
f1, . . . , fk we consider the map

ob(g) : R −→ OX : r = (r1, . . . , rk) 7→
∑

gisi

the lemma above can be reformulated to say that the map is well-defined.

Lemma 10.6. Let R0 be the submodule of R generated by relations of the type:

(0, . . . , fj , 0 . . . , 0,−fi, 0, . . . , 0)

where it is supposed that fj is on the i’th spot, and −fi is on the j’th spot.

The proof is left as an exercise. The map ob(g) therefore descends down to a map:

ob(g) : R/R0 −→ OX

The he question of lifting the family to a flat family of third order can be reformulated as saying that
the map is (†) is of special type. We need to find h1, . . . , hk such that the map ob(gg is of type:

(r1, . . . , rk) 7→
∑

hiri

This motivates the following definition

Definition 10.7. Consider a presentation of the ideal I = (f1, . . . , fk) as k[[x]]-modules:

0 −→ R −→ F
(f1,...,fk)−→ I

This induces a map:
Hom(F ,OX) −→ Hom(R/R0,OX)

hi 7→ (ri 7→
∑

hiri)

Then we define:
T 2

X = Hom(R/R0,OX)/Hom(F ,OX)



CHAPTER 10. T 1 AND T 2 FOR SINGULARITIES 41

We showed the following Theorem:

Theorem 10.8. The deformation g over T can be lifted to third order if and only if the element:

ob(g) ∈ T 2
X

is zero.

Having lifted to third order, the question is whether one can lift to fourth order. It turns out that
one gets an obstruction element associated to this situation again. This obstruction element is in T 2

X

again! For this, and more, we refer to the exercises.

Exercise 10.9. Prove 7.2



Chapter 11Curves on Surfa
es I
Let F be a smooth compact complex surface. We will consider families of curves

Cs ⊂ F × S

Suppose 0 ∈ S. The following picture

C0

Ct

shows that a tangent vector to S ”is” a vectorfield on C0. This vectorfield is well–defined only up
to tangent vectorfields, giving an element in the normal bundle N . The normal sheaf sits in the
following exact sequence

0 −→ ΘC0
−→ ΘF |C0

−→ NC0/F −→ 0

and is defined by
NC0/F = H om(I /I 2,OC0

)

Here J is the ideal sheaf of C0. Locally, the ideal sheaf is generated by an element f0(x, y), and the
family is given locally by:

f(x, y) = f0(x, y) + sf1(x, y) +O(s2).

Both constructions give a map, called the ”characteristic map”:

ρ : T0S −→ H0(C,NC0/F )

We look in more detail to the case:

• C0 is a curve of degree d in P2.

42
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• S is the linear system of all curves of degree d, so S is in fact equal to P(d+2

2 )−1.

The normal bundle sequence then looks like:

0 −→ OP2 −→ OP2(C0) −→ NC0/P2 −→ 0
1 7−→ 1

f 7−→ (f 7→ 1)

By taking global sections we get an isomorphism:

H0(OP2(C0))/C ≈ H0(NC0/P2)

Therefore S = P(d+2

2 )−1 is a universal object for families of degree d. Curves can be given by equations
∑

aix
i(multi-index notation)

The ai give the (homogeneous) coordinates for the base space S.

We now impose singularities, that is, we consider curves with fixed types of singularities, say of type
T = (T1, . . . , TL)

Definition 11.1.

Σ
T
d = {fd(x, y, z) | fd = 0 has k singular points of type T1, . . . , Tk}/C∗

In general this space will not be linear, as we will see later, ??

Definition 11.2. For a curve C ∈ Σ
T
d . Let the singular points of C be p1, . . . , pk. We define the

sheaf N ′
C by the following exact sequence:

0 −→ N ′
C −→ NC −→ ⊕k

i=1T
1
(C,pi)

−→ 0

Theorem 11.3 (Wahl). The tangent space to Σ
T
d in C is H0(N ′

C). The ”obstructions” lie in

H1(N ′
C). The formal completion of Σ

T
d at C is the fibre of a map ob : H0(N ′

C) −→ H1(N ′
C).

Remark 11.4. It follows that from H1(N ′
C) = 0, that Σ

T
d is smooth. and we have an exact sequence:

0 −→ H0(N ′
C) −→ H(NC) −→ ⊕k

i=1T
1
(C,pi)

−→ 0

We now come to a famous example of a Σ
T
d which is not smooth:

Example 11.5 (Luengo). ΣA35

9 is not smooth.

The singular point of ΣA35

9 is the curve C giving by the equation:

f(x, y, z) = x9 + y(xy3 + z4)2

It has indeed an A35–singularity, at (0 : 1 : 0). Look at the affine chart y = 1, put ξ = x+ z4, and we
get equation

ξ2 + (ξ − z4)9 = ξ2 + z36 + hot = 0

so that we indeed see that it has an A35–singularity. The form of the equation is:

hyperflex 

4
φ

l
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l9 + φ2
4 · n = 0. The hyperflex intersects the curve φ4 with multiplicity four. Curves of this form form

a 16–dimensional family. (Why?) The expected dimension of ΣA35

9 is
(
9+2
2

)
− 1− 35 = 19.

Theorem 11.6. The special curves form the singular locus of the ΣA35

9 .

We want to understand the following exact sequence:

0→ H0(N ′)→ H0(N )→ T 1
C,p → H1(N ′)→ 0

Here H0(N ) ∼= C54 (54 =
(
11
2

)
− 1), the space of monomials in x, z of degree ≤ 9. p is the singular

point of C, and has therefore dimension 35, because C has an A35–singularity.

f = x9 + (x+ z4)2

∂x : 9x8 + 2(x+ z4)

∂z : 8z3(x+ z4)

x

z

 1     2    3     4     5    6     7    8    9 

9

 1

2
3

4

5
6

7

8

Put J = (∂x(f), ∂z(f). We have x9 = 4∂x(f)−∂z(f)
36 ∈ J . Similarly, x8z3 ∈ J . Furthermore, every

monomial with a z4 in it, can be reduced modulo J to something in x (look at ∂x(f)).

A basis of T 1 is represented by xizj, i < 9, j < 4, (i, j) 6= (8, 3). The map H0(N )→ T 1
( C, p) is given

by the ”picture”. Obviously, all elements of T 1 which can be represented by monomials of degree ≤ 9
are in the image of the map. What about x8z2 and x7z3. Now

x8z2 ≡ −2

9
z2(x + z4) ∈ Im(H0(N )→ T 1

p )

but x7z3 /∈ Im(H0(N )→ T 1
p ). (Check this). We conclude:

Lemma 11.7. H1(N ) = [x7z3] ∼= C, H0(N ′) = 20.
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So we have four transverse directions to the special family considered above. Thus we get four
interesting elements of H0(N ′) which keep the A35 singularity to first order, but not to higher order.
Those elements are given by:

x9 + (x+ z4)2 + 2(x+ z4) · (ǫ60x5 + ǫ51x
4z + ǫ42x

3z2 + ǫ[3x
2z3)

The fact that this deformation keeps to first order the A35–singularity, can be seen by simply ”com-
pleting the square”:

x9 + (x+ z4 + ǫ60x
5 + ǫ51x

4z + ǫ42x
3z2 + ǫ33x

2z3)2((∗))
This expression is of degree 10, hence does not globalise. By using coordinate transformation to second
order, one can remove some monomials of degree 10, like x8z2. But x7z3 cannot be removed. The
coefficient of (∗) of x7z3 is:

ǫ60 · ǫ33 + ǫ51ǫ42

This gives the quadratic part of the equation for Σ35
9 at the point p, so in particular it shows that

Σ35
9 is not smooth at that point. If one tries to find the higher order equations for Σ35

9 one runs into
terrible computations, so here we better stop.



Chapter 12Cohomology
To compute the simplicial homology of, say, a smooth compact manifold one can start by triangulating
the manifold. One has then a (finite) number of vertices, edges, 2-faces, . . . , top dimensional faces
with boundary maps. The homology with values in an abelian group G is the homology of the complex
(K., ∂) with Ki the free G-module with the i-faces as basis and the differential ∂ the boundary map
extended by linearity.

Cohomology is computed with the dual complex. Concretely this means that a cochain f assigns to
each vertex pi a group element fi, to an edge pij connecting the vertices pi and pj an element fij , etc.
The differential is given by (d f)(pij) = f(∂ pij) = fi− fj , (d f)(pijk) = fij + fjk + fki, etc. A cochain
f is called closed if d f = 0 and exact if f is of the form dω.

Similar formulas appear in the definition of Čech cohomology. Consider a space X and a covering
{Ui}. One has the following correspondance:

covering triangulations

Ui ↔ vertices

Ui ∩ Uj ↔ edges

Ui ∩ Uj ∩ Uk ↔ 2-faces

. . . . . .

Given a sheaf of rings F on X we can now associate to each Ui a section fj ∈ F (Ui), to an intersection
Ui ∩ Uj a section fij ∈ F (Ui ∩ Uj) etc. We obtain the same formulas for the differential as above. A
0-cochain F is again closed if fi − fj = 0 on Ui ∩ Uj.

We get a complex

C0 −→ C1 −→ C2 −→ · · ·

⊕F (Ui)
d−→ ⊕F (Ui ∩ Uj)

d−→ ⊕F (Ui ∩ Uj ∩ Uk)
d−→ · · ·

where the first map d is defined by d f|Ui∩Uj
= fi − fj , the second by d f|Ui∩Uj∩Uk

= fij + fjk + fki

etc. One checks that d2 = 0

Example 12.1. One has that H0(X,F ) are the global sections of F . In particular for F = OX the
vector space H0(OX) is the space of global functions on X .

Example 12.2. H1(O∗X): this group classifies line bundles on X because it is the space of transition
functions modulo equivalence. In this case we write the sections multiplicative. As notational conve-
nience we set ϕji = (ϕij)

−1. Then the cocycle condition ϕijϕjkϕki = 1 for 1-cochains translates into
ϕik = ϕijϕjkϕijϕjk whereas one obtains isomorphic bundles from transition functions ϕ′ij which can

be written as ϕ′ij = fi

fj
ϕij for a system of functions fi ∈ Γ(Ui,O∗X).

46



CHAPTER 12. COHOMOLOGY 47

The tangent sheaf

If X is an analytic manifold then the tangent sheaf ΘX is the sheaf of analytic sections of a vector
bundle, namely the tangent bundle. Given a covering {Ui} of X with small enough open sets one
has a covering {Ui × Cn} of the tangent bundle TX . If (z1, . . . , zn) are local coordinates on Ui and
(z′1, . . . , z

′
n) on Uj then the transition function ϕUi,Uj

is given by the matrix




∂z1

∂z′
1

(p) . . . ∂zn

∂z′
1

(p)

...
...

∂z1

∂z′
n
(p) . . . ∂zn

∂z′
n
(p)




The group H0(Θ) consists of the global vector fields on X . This is the associated Lie-algbra of the
automorphism group Aut(X).

Example 12.3. If X = P1 then Aut(X) = PGl(2,C) and H0(ΘX) ∼= Sl(2,C).

The number of zeroes of a section of a rank n vector bundle F is cn(F ). In particular cn(Θ) equals
e, the Euler Number.

Now we come to H1(Θ). The complex manifold structure on X is determined by the coordinate
changes between local coordinates on open sets of an open covering. Let X = ∪n

i=1Ui where each Ui is
isomorphic to the unit disc with coordinates zi (thi is a vector). The transition functions zi := Fijzj

are holomorphic on the domain of definition. Of course, whenever defined, we have

Fik = FijFjk .

Now we take a one parameter infinitesimal deformation of X , i.e. we consider a manifold XT over

T := Spec(C[ε])

where ε2 = 0. The idea (due to Kodaira and Spencer) is to take a covering:

XT = ∪n
i=1(Ui × T)

We perturb this situation, i.e. we look at transition functions Fij which now are depending on zj and
ε, and such that for ε = 0 we get back our Fij . We have the condition that on Ui ∩ Uj ∩ Uk:

Fik(zk, t) = Fij(Fjk(zk, ε), ε) .

Writing Fij = Fij + εGij we can consider Gij as a vector field on Ui ∩ Uj, explicitly:

θij =

n∑

α=1

G
(α)
ij

∂

∂z
(α)
i

.

The equation
Fij(Fjk + εGjk) + εGij(Fjk) = Fik + εGik

yields using the chain rule the equation between vector fields

θij + θjk = θik

because

Fij(Fjk + εGjk) = Fij(Fjk) + ε
∂Fij

∂zj
Gjk

and
∂Fij

∂zj
= ∂zi

∂zj
is just the Jacobian, which as we saw gives the transition functions on the tangent

bundle.
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We conclude that our collection of vector field θij satisfy the cocycle condition. It is boring to check
that thie resulting element in first Cech cohomology group H1(X,ΘX) is independent of the choices
made. On the other hand, given a cocyle gij

∂
∂zi

one defines a deformation over T by giving its
transition functions Fij = fij + ǫgijThis deformation turns out to be trivial exactly when we have a
coboundary.

Theorem 12.4. The infinitesimal deformations of a complex manifold X over T are classified by
H1(X,ΘX)



Chapter 13Curves on Surfa
es II
Take a family of curves on a projective surface F . Take on F × S an effective Cartier divisor which
is flat over S.

Theorem 13.1. A 1–parameter family of curves Ct is flat

⇐⇒
The degree of Ct and the (arithmetic) genus Ct is constant

More generally one has, that a familyXt in projective space is flat, if and only if the Hilbert polynomial
is constant in t.

Proof. The Hilbert polynomial

dimH0(Xt,OXt
(m)) =: ht(m)

is a polynomial in m for m >> 0. Flatness means that t is a nonzero–divisor, that is, we have an
exact sequence:

0 −→ OXT

·t−→ OXT
−→ OX0

−→ 0

For m >> 0 one has that H1(OXT
(m)) = 0. We get the following exact sequence:

0 −→ H0(OXT
(m))

·t−→ H0(OXT
(m)) −→ H0(OX0

(m)) −→ 0

So one sees that the rank of−→ H0(OXT
(m)) as C{t}–module is the same as the vectorspace dimension

of H0(OX0
(m)).

Problem 13.2. Does ther exist a universal family?

Answer is YES, (Grothendieck), and is called the Hilbert scheme.

How to give the Hilbert scheme coordinates. Well, take a curve C ⊂ F ⊂ Pn. We have fixed the
Hilbert polynomial P . Take m >> 0, and look at all polynomilas C[X ]/IF which vanish on C and
has degree m, that is (H is the hyperplane–divisor):

H0(F,OF (−C +mH))

The dimenions of this vector–space is independent of C, but only depends on the fixed Hilbert poly-
nomial P . We get the linear subspace:

H0(F,OF (−C +mH)) ⊂ H0(F, )F (mH))

This subspace characterizes C. It gives therefore a point in a Graßmannian. This leads to the Hilbert
scheme HilbP (F ) =: ΣP . (Recall that P is the Hilbert polynomial.)
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Theorem 13.3. Let be given a curve C and let [C] ∈ ΣP be the corresponding point in the Hilbert
scheme. We have a characteristic map:

ρ : T[C]Σ
P −→ H0(C,NC)

The map ρ is an isomorphism. (This is more or less a tautology!) The ”obstructions lie in
H1(C,NC)”. In particular, if H1(C,NC) = 0, then ΣP is smooth in [C].

Proof. Let CA ⊂ F × Spec(A), A artinian. Take an exact sequence:

0 −→ I −→ A′ −→ A −→ 0.

We suppose that I is a one–dimensional vector–space, with generator η. An example is A =
C[ǫ]/(ǫn), A′ = C[ǫ]/(ǫn+1), η = ǫn.

We have open sets:

Ui on F ; Fi = 0 local equation of CA defined on Ui × Spec(A).

Uj on F ; Fj = GijFj with Gij ∈ Γ(Ui ∩ Uj ,O∗).

Take an arbitrary lift F ′i , G
′
ij . Then

F ′i −G′ijF ′j = η · hij((∗))
We want to show that the hij naturally defines an element in H1(NC).

By restricting to the zero fibre, we also have the fi, local equation for our original curve. It is defined
over C = A/mA. The normal sheaf of C locally on Ui is generated by:

f1 7→ 1

The condition that fi 7→ hij on Ui ∩Uj is a cocycle is as follows: Look at Ui ∩ Uj ∩ Uk, and compute
the coboundary:

fi 7→ hij − hik + gijhjk

where gij = fi

fj
. Using the definition of hij , see (∗), we get:

η(hij − hik +G′ijhjk) = F ′i −G′ijF ′j − F ′i +G′ikFk +G′ij(F
′
j −G′jkF

′
k) = (G′ik −G′ijG′jk)F ′k

As the G′ij are lifts of the Gij , the term (G′ik−G′ijG′jk) is divisible by η. We divde by η, and calculate
modulo mA to get the following equation:

hij − hik + gijhjk =
G′ik −G′ijG′jk

η · fk
( ∗∗)

The right hand side is zero in OC showing that the hij indeed is a cocyle. It therefore defines an
element in H1(N . It remains to show, that if the hij is a coboundary, (that is the zero element in
H1(N , that then the family can be lifted. So, suppose that hij is a coboundary. Then we have:

fi 7→ ki on Ui

whose coboundary should give our hij . This coboundary is given by:

fi 7→
fi

fj
kj − ki on OC|Ui∩Uj

This should be equal to hij but of course, only in OC . We can therefore find elements lij with:

hij =
fi

fj
kj − ki + lijfj

Now one calculates directly that:

(F ′i + ηki)− (G′ij + ηlij)(F
′
j + ηkj) = 0

so that we found a lift of our given family over Spec(A′).
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Therefore, if H1(NC = 0, the Hilber schem ΣP is smooth. A weaker condition can be formulated.
Consider the exact sequence:

0 −→ OF −→ )f (C) lraNC −→ 0

It leads to the long exact cohomology sequence:

−→ H1(OF (C)) −→ H1(NC)
δ−→ H2(OF

Theorem 13.4. If δ is injective then ΣP is smooth in [C].

Proof. The coboundary δ has to be computed:

0 −→ Ak −→ Bk −→ Ck −→ 0
↓ ↓ ↓

0 −→ Ak+1 −→ Bk+1 −→ Ck+1 −→ 0

0 −→ OF −→ OF (C) −→ NC −→ 0

1 7→ 1 = fi

fi
1
fi

7→ (fi 7→ 1)

Divide (∗∗) by fi (Recall that fk = fi

gik
etc.)

hij

fi
= −hik

fi
+
hjk

fi
=

1−G′ijG′jkG
′−1
ik

η

This is a coboundary:

σijk =
1−G′ijG′jkG

′−1
ik

η
∈ H2(OF ).

The element σijk is the obstruction to lift Gij from OF ⊗ A)∗ to OF ⊗A′)∗. Over C the map

OF ⊗A′)∗ −→ OF ⊗A)∗

splits. as OF ⊗A)∗ ∼= O∗F (1 + OF ⊗mA). We have the exponential map:

exp : (sOF ⊗mA)+ ∼= 1 + OF ⊗mA

and the sequence A′ −→ A splits additively.

By a curve on a smooth surface we mean an effective (Cartier) divisor. A Cartier divisor is a global
section of K ∗/O∗: K is the function field of F : K is a constant sheaf. A Cartier divisor can be
given by a local equation. Recall that

D1
lin∼ D4 if D1 −D2 = (f); f ∈K ∗

that, is D1 and D2 are in the same linear system.

C1 ∼ C2: if C1 and C2 are in the same flat family of curves. C1 and C2 are called algebraically
equivalent.

This is not an equivalence relation, so make it into one by taking the transitive hull. From the
sequence:

0 −→ O∗ −→ K ∗ −→ K ∗/O∗ −→ 0

we get
0 −→ H0(K ∗)/C∗ −→ H0(K ∗/O∗) −→ H1(O∗) −→ 0

H1(O∗) is called the Picard group. It has a lots of components. Pic0(F ) is called the Picard variety:
this all all elements in Pic which are algebraically equivalent to zero modulo linear equivalence.

Severi conjectured that
dimPic0 := dimH1(O).

This is true for over C, bot is wrong in characteristic p.
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Proof. The exponential sequence:

0 −→ Z −→ O
exp−→ O∗ −→ 0

gives rise to:
H1(Z) −→ H1(O) −→ H1(O∗) −→ H2(Z)

(So this is a transcendental proof, and therefore not valid for characteristic p.

Furthermore we have:
0 −→ OF −→ OF (C) −→ NC −→ 0

whose cohomology gives:

0 −→ H0(OF (C))/C∗ −→ H0(NC) −→ H1(OF )H1(OF (C))

There are a lot of curves deg(C) >> 0 wiht H1(OF (C)) = 0. Now

H0(NC): Zariski tangent space to the Hilbert scheme,

H0(OF (C)): Tangent space to the linear system,

and of course H1(OF ) ”does not depend on C”. Therefore:

Theorem 13.5. If the Hilbert scheme is smooth in [C], the the dimension of divisors algebraically
equivalent to zero, modulo linear equivalence, can be computed from the tangent spaces.

This gives q as dimension.



Chapter 14On how many parameters does asurfa
e depend?
Let X be a complex manifold, with a covering by small opens Ui and with transition functions Fij .
One gets all the complex structures on X by deforming the Fij . What are the first order perturbations
of the Fij? Because f(a + ǫg) = f(a) + ǫf ′(a).g + . . ., perturbing Fi,j to Fij + ǫGij leads to a Cech
1-cocycle in ΘX , the tangent sheaf of X . Hence, the first order perturbations correspond to

H1(ΘX)

which therefore is the tangent space to the set of complex structures.

H
1
( Θ )

Moduli space

How to compute H1(Θ) for a given complex variety? For a Riemann surface X of genus g this was
simple. If g ≥ 2 one has H0(Θ) = 0, so it follows from Riemann-Roch that dimH1(ΘX) = 3g − 3.
Now suppose X is a complex surface. Of course we always can compute χ(Θ) from Riemann-Roch.

χ(Θ) = dimH0(Θ)− dimH1(Θ) + dimH2(Θ)

Riemann Roch for a line bundle O(D) on a surface reads:

χ(OD) =
1

2
D(D −K) + χ(O)

If V = O(D1) ⊕ O(D2) is a decomposed rank two bundle, then hi(V ) = hi(O(D1)) + hi(O(D2)), so
we find

χ(V ) =
1

2
(D2

1 +D2
2 − (D1 +D2)K) + 2χ(O)

53
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Now c1(V ) = D1 +D2, c
2
1(V ) = (D1 +D2)

2 = D2
1 +D2

2 +2D1 ·D2, c2(V ) = D1 · · ·D2, so we can write

χ(V ) =
1

2
(c1(V )2 − 2c2(V )− c1(V )K) + 2χ(O)

which now makes sense and in fact is true for any rank two bundle on a surface. Let us apply it to
V = Θ: c1(Θ) = −K, c2(V ) = e. By Noether’s formula, χ(O) = 1

12 (e+K2). Plugging in everything,
we get

χ(Θ) =
1

6
(7K2 − 5e)

Let us take a look at some examples: if X is a torus, or a K3-surface, Ω1 ≈ Θ, hence H1(Θ) = H1(Ω1)
has the Hodge number h1,1 as dimension. We find:

Abelian K3

H0(Θ) 2 0

H1(Θ) 4 20

H2(Θ) 2 0

Indeed, an abelian surface A = C2/Λ depends on the choice of a lattice with four base vectors in C2,
= 2× 4 parameters, but there acts a group Mat(2× 2), reducing the number to 4.

Now let us take a look at K3’s: the simplest example is a quartic in P3. A polynomial F (X,Y, Z, T )
homogeneous of degree 4 has 35 coefficients. The group GL(4) of 4 × 4 matrices acts, so we are left
with 35− 16 = 19 parameters. But:

19 6= 20

Degenerate a quartic to one with a double point, so its equation is of the form F = q2T
2 + q3T + q4,

with qi ∈ k[x, y, z]i. The projection of the surface to the plane is double, ramified along the sextic

4q2q4 − q23 = 0

This sextic has the special property of possessing a contact conic: a conic that is tangent to it wherever
it meets the sextic.
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The whole family of double sextics w2 = f6(X,Y, Z) depends on 28 − 3 × 3 = 19 parameters. So we
found a second family of K3-surfaces, again 19-dimensional, intersecting the first family along some
18-dimensional stratum.

Quartics

Double Sextics

Nodal Quartics

This is not the end of the story, rather only the beginning. It tuns out that in all algebraic families
one finds 19 parameters. All these algebraic families form an incredibly complicated web inside the
20 dimensional moduli space of K3-surfaces.

Can we find some point outside the web? Yes! Take the minimal resolution of A/(z 7→ −z), where X
is a non-algebraic torus.
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Let us turn to surfaces of general type. These do not carry a holomorphic vector field, H0(Θ) = 0. If
we can compute h2(Θ), we have h1(Θ), because we have χ. By duality, h2(Θ) = h0(Ω1(K)). Usually,
this group is non-zero, and we have a problem.

Rational surfaces

For rational surfaces we are in the opposite situation, that H0(Θ) is big. For P2 the dimension is
8 = dimPGl3. The automorphism of P1 × P1 come from Möbius transformations on each factor so
dimH0(Θ) = 3 + 3 = 6. The surface F2 is the resolution of the quadric cone. If the vertex of the
cone lies in a coordinate point the equation does not contain the corresponding variable. A matrix
of an automorphism of P3 preserving the cone can be obtained from a transformation in the plane
preserving the conic and an arbitrary column so dimH0(Θ) = 3 + 4 = 7. This is also the dimension
for F2.

To apply our formula for χ(Θ) we note that for all surfaces Fn one has K2 = 8 and e = 4 so χ(Θ) = 6.

χ = h0(Θ)− h1(Θ) + h2(Θ)

P1 × P1 6 = 6 − 0 + 0

F2 6 = 7 − ? + ?

We conclude that dimH1(ΘF2
) ≥ 1. In fact it is not difficult to compute all Hi(Θ) for all surfaces Fn.

One has dimH1(ΘF2
) = 1 and therefore dimH2(ΘF2

) = 0. But even without doing this we expect
the existence of a 1-parameter deformation with general fibre P1 × P1.

F 0
F2

t0

In fact such a family exists and can be obtained from a small resolution of a deformation of the quadric
cone. Consider the family of projective surfaces over Spec C[t]

xy − z2 + tw2 = 0 .

This is the required deformation.
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F 0
A 1

0 t



Chapter 15The Cotangent Complex
There is a huge machinery to handle systematically tangent and obstruction spaces of various defor-
mation problems: the calculus of the cotangent complexes.

Consider a singularity X . So we have a ring R = P/I, where I is an ideal in the ring P := k[[X]]
of formal power series. in variables x = x1, x2, . . . , xn. Let Ω = ΩP/k := ⊕n

i=1Pdxi the module of
1-forms on P and Θ := HomP (Ω, P ) = ⊕n

i=1P∂/∂xi = Derk(P, P ) the module of vector fields on P .
Recall the exact sequence

0 −→ T 0
R/k −→ Θ⊗R −→ N −→ T 1

R/k −→ 0

Here T 0
R/k = ΘR/k = Derk(R,R) is the module of vector fields on the singularity X . Geometrically,

these are restrictions of vector fields that are tangent to X .

N = HomR(I/I2, R) = HomP (I/R) is the normal module of the singularity, and the space of
infinitesimal deformations was T 1

R/k, the cokernel of the natural map Θ⊗ R −→ N that maps a θ to

the homomorphism g ∈ I 7→ θ(g) ∈ R. For the obstructions there was a space T 2
R/k.

Well, needless to say there is a T 3 as well! In fact, there is a whole sequence of groups

T 0, T 1, T 2, T 3, . . . , T k, . . .

These make up some kind of cohomology theory, and in fact, these groups are cohomology groups of
a certain complex, the cotangent complex L.

58
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How do we construct such a cohomology theory? Recall the construction of the derived functors
Ext∗(M,N) of Hom(M,N). It consists of taking the following three steps.

(1) take a free resolution of M as an R-module.

. . . −→ F 2 −→ F 1 −→ F 0 −→M −→ 0

(2) apply the functor Hom(−, N) to the resolution F ∗. We get a complex

Hom(F 0, N) −→ Hom(F 1, N) −→ Hom(F 2, N) −→

(3) take the homology of this complex

k

Ext(M,N) = Hk(Hom(F ∗, N))

What we want to do now is the ”resolve” the ring R and replace it by some smooth algebra, that is
homologically the same as R. Then we apply the functor ‘taking one-forms’ or ‘taking vector fields’.
Finally, we take homology groups and obtain the tangent and cotangent homology.

Definition 15.1. A graded-commutative k-algebra A is a direct sum of k-modules

A = ⊕i∈ZA
i

with a graded commutative product:
ab = (−1)|a||b|ba

Here |a| denotes the degree of the element a, that is, a ∈ A|a|.

A differential graded algebra, DG-algebra for short, is a pair consisting of a graded commutative
algebra A, together with a differential

∂ : A −→ A.

This differential is required to have the properties
1) ∂ ◦ ∂ = 0.
2) ∂ : Ap −→ Ap+1.
3) ∂(ab) = ∂(a)b+ (−1)|a|a∂(b)
A map with these last two properties is called a derivation of degree 1.

We will only consider A’s with Ak = 0 for k > 0. We then can consider (A, ∂) as a complex of the
form

−→ A−2 ∂−→ A−1 ∂−→ A0 −→ 0.

Remarks: • If we are given symbols zi, i in some index set I, with degrees |zi| ∈ Z, then one can
consider the free graded commutative algebra on the generators zi

A = k[z] := k[zi i ∈ I].

• Any commutatitive k-algebra R can be considered as a DG-algebra by putting R in degree zero:

0 −→ 0 −→ 0 −→ R −→ 0

For any DG-algebra A, the cohomology-object

H(A, ∂) = ker(∂)/Im(∂)

is a graded commutative algebra in a natural way:

Hp(A, ∂) = ker(Ap −→ Ap+1)/Im(Ap−1 −→ Ap)
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Definition 2:
A resolvent for a k-algebra R is a map

A −→ R

where (A, ∂) is a free DG-algebra, and the map induces an isomorphism

H(A, ∂) = R

Put in another way, we require that the complex A resolves R, that is, the sequence

−→ A−2 ∂−→ A−1 ∂−→ A0 −→ R.

is exact.

Example 15.2. Let f ∈ P := k[x] = k[x1, x2, . . . , xn] and R = P/(f) a hypersurface ring. We
consider

A = k[x, e]

where e is an extra generator of degree −1. So we have e2 = 0.
We define the differential ∂ as follows:

∂xi = 0, ∂e = f

Written as a complex, this is:

−1 0

Pe
∂−→ P

a.e 7−→ ∂(a)e+ a∂(e) = a.f

Claim: (A, δ) is a resolvent for R.

Let us try to do this with more equations.

I = (f1, f2, . . . , fp) ⊂ P = k[x]

and put R := P/I. Consider the free graded commutative algebra

A := k[x, e1, e2, . . . , ep] = k[x, e],

where we put the ei’s in degree −1, so
eiej = −ejei.

We define the differential by putting

∂xi = 0, i = 1, 2, . . . , n , ∂ei = fi, i = 1, 2, . . . , p.

As a complex, (A, ∂) is just isomorphic to the Koszul-complex on the elements fi:

A−k =
⊕

i1<i2<...<ik

P ei1ei2 . . . eik
≈ P (p

k) .

Clearly, H0(A, δ) = R. So let us look at H−1(A, ∂).

Ker(
⊕

Pei −→ P ) = {
∑

i

riei | ∂(
∑

i

riei) = 0}

= {
∑

i

riei |
∑

i

rifi = 0}

=: R
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So R is precisely the the module of relations between the chosen generators fi. What is Im(A−2 ∂−→
⊕iA

−1)? Well, ∂(eiej) = ∂(ei)ej − ei∂(ej) = fiej − fjei, which is called the (i, j)’th Koszul relation.
So the image can be identified with the module R0 of Koszul relations. And thus

H−1(A, ∂) ≈ R/R0

It is well-known that the Koszul complex is exact precisely when the fi form a regular sequence, that
is, when R is a complete intersection ring. So in that case the Koszul complex is a resolvent for R.
But in general, R/R0 will be non-zero, and the above complex is not a resolvent for our ring R. Even
worse, there will be H−3, etc.

What can we do to get rid of this unwanted cohomology groups? Choose generators for the P = A0-
module H−1(A, ∂) represented by relations

∑

j

ρijej , i = 1, 2, . . . , r

We enlarge our DG-algebra P [e] by putting in extra generators ρi with |ρi| = −2. That is, we consider
A = P [e, ρ] and define

∂(ρi) =
∑

j

ρijej

To define ∂ on other new elements of A, like ρi.ej we use Leibniz rule: ∂(ρiej) := ∂(ρi)ei + ρi∂(ej),
etc. The complex now looks like:

−2 −1 0

· · · −→ A−2 −→ A−1 −→ A0

· · · −→ ⊕i<jPeiej

⊕⊕iPρi
∂−→ ⊕iPei −→ P

For this new DG-algebra A = P [e, ρ] it holds by construction H0(A, ∂) = R, H−1(A, ∂) = 0.

Of course, now there will in general be non-zero H−2(A, ∂). But the above process can be repeated.
We choose generators τ1, τ2, . . . , τs for H−2(A, ∂) and extend the algebra to P [e, ρ, τ ]. We can go on
with this forever, and create some huge DG-algebra

A = P [e, ρ, τ, . . .]

which has the property that H0(A, ∂) = R, Hk(A, ∂) = 0 for k 6= 0.

Remarks:

• The construction depends on many choices, but one senses that the final object (A, ∂) is essen-
tially unique.

• Rather than working with polynomial rings k[x] one can start with power series rings k[[x]] or
k{x} and arrive at a resolvent of the form A = k[[x]][e, ρ, τ, . . .].

• As a free object, the ring A does not contain much information as such. All interesting infor-
mation about our original ring gets packed into the differential ∂.

• Geometrically, the resolvent is an infinite dimensional superspace, together with an odd vector
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field ∂ on it, whose homology (’fixed point set’) is our original space.

Spec(A)

X

δ

Let us label all our variables zi = x, e, ρ, τ, . . . by some index set I, so that A = k[zi i ∈ I]. Consider
the module ΩA of differentials on A. It is just

ΩA :=
⊕

i∈I

Adzi

We give degrees by putting |dzi| := |zi. We have the universal derivation defined by

d : A −→ ΩA ; zi 7→ dzi

and extended using Leibniz rule d(ab) = (da)b + (−1)|a|adb The differential ∂ on A descends to a
differential on ΩA:

∂ : ΩA −→ ΩA ; ∂(dzi) := d(∂zi)

In this way we obtain a complex
(ΩA, ∂).

Similarly, we have the complex

ΘA = HomA(ΩA, A) = DerA(A,A) =
⊕

i∈I

A
∂

∂zi

(| ∂
∂zi
| = −|zi|.) Elements in degree k are maps δ : A −→ A such that δ : Ai −→ Ai+k δ(ab) =

δ(a)b + (−1)|a|kaδ(b) and are called a derivations of degree k. The operation of graded commutator

[α, β] := α ◦ β − (−1)|a||b|β ◦ α

gives Θ the structure of a super Lie-algebra. That is, one has:

[α, β] = −(−1)|a||b|[β, α]

and the graded Jacobi-identity holds:

(−1)|α||γ|[α, [β, γ]] + (−1)|β||α|[β, [γ, α]] + (−1)|γ||β|[γ, [α, β]] = 0
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The differential δ is a particular derivation of degree 1. Commuting with it defines a map

∇ : Der(A,A) −→ Der(A,A) ; α 7→ [δ, α]

It follows from the graded Jacobi-identity that

∇ ◦∇ = 0

Hence, (Der(A,A),∇) is a complex, in fact the dual to (ΩA, ∂).

Definition:
H−i(ΩA, ∂) =: T

R/k
i

Hi(ΘA,∇) =: T i
R/k

The bracket [−,−] on Der(A,A) = ΘA induces a bracket

T p × T q −→ T p+q

giving

T ∗ :=

∞∑

i=0

T i

the structure of a graded super Lie-algebra.

Definition: The cotangent complex is the complex of free R-modules

LR/k := Ω⊗A R =
⊕

i∈I

Rdzi

If M is any R-module one defines

Ti(R/k,M) := H−i(LR/k ⊗M)

T i(R/k,M) := Hi(HomR(LR/k,M))

These are called the i-th tangent homology and cohomology of R (over k with values in M .

Example: We look again at a hypersurface: R = P/(f), P = k[x] A = P [e], ∂(e) = f . Put
Ω :=

⊕n
i=1 Pdxi. The complex ΩA : looks like

−2 −1 0
Pede −→ Pde⊕ eΩ −→ Ω

The differential works as follows:

∂(de) = d(∂(e)) = df =
∑

i

∂f

∂xi

∂(edx) = ∂(e)dx− e∂(dx) = fdx

We see: T0 = ΩR/k, Ti = 0 for i 6= 0. With Θ :=
⊕n

i=1 P
∂

∂xi
, the complex ΘA : looks like:

−1 0 1

Pe ∂
∂e −→ Pe ∂

∂e ⊕Θ −→ P ∂
∂e

As homology we find: T 0 = ΘR/k, T 1 = P/(f, ∂f/∂xi), as it should be.

The cotangent complex is obtained by tensoring ΩA with R. The effect is putting all new elements,
like e equal to zero an d computing module f in P . So we have:
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LR/k

−2 −1 0
0 −→ Rde −→ Ω⊗R

The dual complex is HomR(LR/k,R):

−1 0 1

0 −→ Θ⊗R −→ R ∂
∂e

The Deformation Equation

Starting from a k-algebra R we constructed a resolvent A, with a super vector field ∂ : A −→ A. The
cohomology of this field was R.

Spec(A)

X

δ

Spec(A)

X’

As R and ∂ are sort of equivalent data, it is natural to expect a close relation between deformations of
X = Spec(R) and deformations of the differential ∂: a deformed differential ∂′ defines X ′ = spec(R′),
where R′ = ker(∂′)/Im(∂′).

∂′ := ∂ + ω is a differential if
0 = ∂′ ◦ ∂′

= (∂ + ω) ◦ (∂ + ω)
= ω ◦ ∂ + ∂ ◦ ω + ω ◦ ω
= [ω, ∂] + 1

2 [ω, ω]
= ∇ω + 1

2 [ω, ω]

This last equation ∇ω + 1
2 [ω, ω] = 0

occurs over and over in mathematics. We call it the deformation equation. We will see that it defines
the semi-universal deformation of X . We remark that the first order term is ∇ω = 0, which means
that ω ∈ H1(Der(A,A)) = T 1

R/k.

Excercise: If ω ∈ T 1
R/k, show that [ω, ω] ∈ T 2

R/k



Chapter 16Li
htenbaum-S
hlessinger Complex
For applications in deformation theory one usually only needs T 0,T 1 and T 2. To get these groups, one
does not need to construct a complete resolvent; it suffices to work with with the truncated complex.
Let LR/k be the cotangent complex. Let us look at the beginning:

−2 −1 0

−→ (LR/k)−1 −→ (LR/k)−1 −→ (LR/k)0

⊕r
i=1Rdρi −→ ⊕Rdei −→ Ω⊗R

Under ∂ the element dρi is mapped to a system of generators ρijej for the module R/R0 of relations
mod Koszul relations between the fi. When we mod out Im(∂ : L−3 −→ L−2) we get what is called
the Lichtenbaum-Schlessinger complex.

−2 −1 0

R/R0 −→ ⊕R dei −→ Ω⊗ R
r 7−→ ∑

ri dei

dei 7−→ dfi

The groups T 0,T 1 and T 2 can be calculated by taking the dual of this complex. It reads

−2 −1 0

Θ⊗R −→ R ∂
∂ej

−→ HomR(R/R0, R)

θ 7−→ ∑
i θ(fi)

∂
∂ei

∂
∂ej

7−→ (ρi 7→
∑

j ρij)

We see that the homology group in degree 0 is T 0 = ΘR/k = {θ ∈ Θ ⊗ R | θ(fi) ⊂ (f1, . . . , fk)}.
Elements

∑
i gi

∂
∂ei

that map to zero in HomR(R/R0, R) correspond precisely elements of fi 7→ gi of

N = HomR(I/I2, R). We see that T 0, T 1 and T 2 are indeed the same as we defined before by more
ad hoc definitions.

The SOUP

We defined the cotangent complex for algebras over k, but of course one can work over any base
ring S. The cotangent complex LR/S can be defined in great generality, and so we obtain modules
T i(R/S,M) There is a list of useful properties, which can be taken as axioms, which everyone should
know.
Here comes this Set Of Useful Properties:

65
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(1) cohomology theory
Any short exact sequence of R-modules

0 −→M ′ −→M −→M ′′ −→ 0

gives rise to a long exact (co)-homology sequence of R-modules involving the T i or Ti’s:

0 −→ T 0(R/S,M ′) −→ T 0(R/S,M)

−→ T 0(R/S,M ′′) −→ T 1(R/S,M ′) −→ T 1(R/S,M) −→ . . .

(2) spectral sequence
There is a spectral sequence relating T i and Ti.

E2
p,q := ExtpR(Tq(R/S,R),M) =⇒ T p+q(R/S,M).

(3) i = 0

T 0(R/S,M) = ΩR/S ⊗M
T0(R/S,M) = Hom(ΩR/S ,M)

(4) Vanishing
If R is a smooth S-algebra, then

Ti(R/S,M) = T i(R/S,M) = 0 i ≥ 1

So the T ’s are concentrated at the singularities.

(5) i = 0
T0(R/S,M) = ΩR/S ⊗M, T 0(R/S,M) = Hom(ΩR/S ,M) = Der

S
(R,M)

(6) (co)-normal
If P −→ R is surjective map of S-algebras, with kernel I, then T0(P/R,M) = T 0(P/R,M) = 0.
Furthermore,

T1(P/R,M) = I/I2 ⊗P M

T 1(P/R,M) = HomP (I/I2,M)

(7) Base change
If R is a flat S-module, and R′ obtained by base-changing from a map S −→ S′, (i.e. R′ =
R⊗S S

′), then
LR′/S′ = LR/S ⊗R R′

From this one gets isomorphisms

T i(R′/S′,M ′) = T i(R/S,M ′).

If moreover in this situation S −→ S” is flat, you can pull out:

T i(R′/S′,M ⊗R R
′) = T i(R/S,M)⊗R R

′ .

(8) Zariski-Jacobi sequence
For any map of S-algebras P −→ R there is an exact sequence of complexes

0 −→ LP/S ⊗R −→ LR/S −→ LR/P −→ 0.

Associated to this sequence and an P -module M , there are interesting long exact sequences:

. . . −→ Ti+1(R/P,M) −→ Ti(P/S,M) −→ Ti(R/S,M) −→ Ti(R/P,M) −→ . . .

. . . −→ T i(R/P,M) −→ T i(R/S,M) −→ T i(P/S,M) −→ T i+1(R/P,M) −→ . . .
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The Zariski-Jacobi sequences sort of characterise the Ti and T i’s. It is the derived version of the chain
rule.

Example Let P be smooth over S = k, R = P/I and M = R. The Zariski-Jacobi sequence reads:

0 −→ T 0(R/P,R) −→ T 0(R/k,R) −→ T 0(P/k,R)

−→ T 1(R/P,R) −→ T 1(R/k,R) −→ T 1(P/k,R) −→ T 2 · · ·

The first module is zero, because P ։ R. The second module is just ΘR/k, the vector fields on X .
The third module is ΘP/k ⊗ R, the fourth term T 1(R/P,R) = Hom(I/I2, R) = N , the fifth term is
just T 1(R/k). The sixth term is T 1(P/k,R) = 0, because P is smooth over k. Hence, the sequence
reduces to the usual sequence defining T 1. Moreover, we get isomorphisms for i ≥ 2.

T i(R/P,R)
∼−→ T i(R)



Chapter 17Spe
tral Sequen
es
We have defined the cotangent complex for rings. Let now X be any scheme or analytic space and
p ∈ X a point. Then OX,p is a ring and LX,p is a OX,p-module. Considering them altogether gives us
a complex of OX -sheaves. In fact one globalises as usual; in the algebraic case one rather considers
the affine open sets U and their rings O(U).

Once we have the complex of sheaves L̇X we define the T i by taking cohomology:

Ti := Hi(X, L̇X) .

The symbol ‘H’ stands for what is called hypercohomology.

One can define hypercohomolgy with a Čech covering. Cover X with open sets Ui. For a sheaf F on
X one has the Čech cochains Cp(F ) =

∏
Γ(Ui0 , . . . , Uip

,F ) with differential δ. We define a double
complex

Kp,q = Cp(Lq)

with differentials d coming from L̇X and δ.

...
...

... . .
.

C0(L2) C1(L2) C2(L2) . . .

C0(L1) C1(L1) C2(L1) . . .

C0(L0) C1(L0) C2(L0) . . .

The hypercohomology Hi(L̇X) is now by definition the cohomology of the associated single complex

Kn =
⊕

p+q=n

Kp,q

which has differentialD = d±δ: to make it into a complex one defines the differential in the p-direction
by (−1)qδ:Kpq → Kp+1,q.

Let us first look at H0(L):
C0(L1)

xd

C0(L0)
δ−−→ C1(L0)
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For a cochain k ∈ K0 = C0(L0) the condition Dk = 0 is equivalent with the two conditions d k = 0
and δ k = 0. The last one says that k is a global section of L0 while d l = 0 expresses the fact that k|Ui

takes values in T 0
Ui

, because on Ui the complex L0 has zero’th cohomology T 0
Ui

. In fact one obtains
in this way a sheaf which we denote by T 0 or T 0

X . The higher cohomology of the complex leads in
the same way to cohomology sheaves T i. So our element k with Dk = 0 is an element of H0(X,T 0)
and we have shown that

T0
X = H0(X,T 0) .

To find T1 we look at C0(L1) and C1(L0).

hier eventueel een diagramjaagd

Claim 17.1. There is an exact sequence

0 −→ H1(T 0) −→ T1 −→ H0(T 1) −→ H2(T 0)

There exists an useful tool to organise such computations: a spectral sequence. In most of the appli-
cations lots of things become zero which makes it is easy to compute with spectral sequences. But
the general formalism covers all cases and the maps involved can be quite hard to compute.

We start by defining Epq
0 as something which is isomorphic to Kpq but defined differently:

Epq
0 =

Kpq +Kp+1,q−1 + · · ·
Kp+1,q−1 + · · ·

∼= Kpq

The map D:Kpq → Kp,q+1 ⊕Kp+1,q induces a map d0:E
pq
0 → Ep+1,q

0 .

@
@

@@

@
@

@
@

@

−→

x

Now we can compute cohomology and define Epq
1 as the pth cohomology of the complex (Ep,.

0 , d0).
The differential D still induces a differential d1, this time as a map Epq

1 → Ep,q+1
1 . And this process

can be repeated: E..
r+1 is the cohomology of (E..

r , dr) with dr:E
pq
r → Ep+r,q−r+1

r .

At this point a number of things have to be checked, e.g., that D really induces the said differentials
dr. And it is best to do this yourself. The answer to these exercises can be found in any good book on
homological algebra. You should be warned that there exists also a slick abstract approach to spectral
sequences using ‘exact couples’.

We obtain in our case that Epq
0
∼= Cp(Lq), Epq

1 = Cp(T q) and Epq
2 = Hp(X,T q). Often one sees a

spectral sequence written in the form that only the Epq
2 -term is given. Note that now Čech cohomology

is no longer mentionned: we can compute the sheaf cohomology Hp(X,T q) by any means we like.

Example 17.2. Consider the case that X has only complete intersection singularities. Then T i
X = 0

for i > 1 and the E2-term of our spectral sequence consists of two non-trivial rows.

...
...

... . .
.

0 0 0 . . .

H0(T 1) H1(T 1) H2(T 1) . . .

H0(T 0) H1(T 0) H2(T 0) . . .
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The maps d2 are now maps d2:H
i(sT 1)→ Hi+2(T 0), and in (E3, d3) the maps d3 go two steps down,

so are necessarily zero maps. Therefore E3 = E4 = . . . = E∞ and one says that the spectral sequence
converges, to TX .

We conclude that T0 = H0(T 0) and the remaining Ti occur in a long exact sequence:

0 −→ H1(T 0) −→ T1 −→ H0(T 1) −→ H2(T 0) −→ T2 −→ · · ·

Example 17.3. Consider the case of a curve with isolated singular points.

g 1

g2

The sheaves T i
X , i ≥ 1 are concentrated at the singular points, so Hj(T i

X) = 0, i, j ≥ 1. We get a
short exact sequence

0 −→ H1(T 0) −→ T1
X −→ H0(T 1) −→ 0

and isomorphisms
Ti

X = H0(T i
X), i ≥ 2

In particular, if all the singularities of the curve are complete intersections, then H0(T 2
X) = 0, hence

T2 = 0: there are no obstructions, so Def(X) is smooth. Moreover, all local deformations of the
singularities can be globalised to deformations of X .



Chapter 18Cotangent Complex II
Relative case

Associated to a map f : X −→ Y of complex spaces, there are (at least) six a priori different
deformation problems one can think of. These are

(1) Def(X −→ Y )

(2) Def(X/Y )

(3) Def(X\Y )

(4) Def(X)

(5) Def(Y )

(6) Def(f)

In the first case Def(X −→ Y ) we deform everything: X , Y and the map between them. So objects

of Def(X −→ Y )(S) are (isomorphism classes, of course) of f maps XS

fS

Y S where XS and YS are

S-flat and restricting to X
f−→ Y over the special point. Similarly, Def(X/Y ) consists of deformations

over Y , that is Y is deformed trivially. Def(X/Y )(S) consists of maps XS
fS−→ Y × S, where XS is

S-flat, etc. We leave it to the reader to think of the meaning of the other cases. In each of these cases
there exists a cotangent complex associated to the deformation problem. For Def(X −→ Y ) we have
LX−→Y , for Def(X/Y ) there is LX/Y .

Let us take a closer look at LX/Y . Is is a complex of sheaves on X . Roughly speaking, it is constructed
as in the local case: at x ∈ X it is the cotangent complex

LR/S

where R = O(X,x) and S = O(Y,y) In particular, the cohomology sheaves T i
X/Y of LX/Y have stalks

(T i
X/Y )p = T i(O(X,p)/OY,f(p),O(X,p))

There are also global T i’s
Ti

X/Y := Hi(LX/Y )

These hypercohomology groups can be computed in the usual way by a local to global spectral se-
quence. These groups have for k = 0, 1, 2 obvious interpretations as first order automorphisms,
deformations and obstructions of X over Y . That is, we deform X −→ Y , but Y is kept fixed.

Let us look at some important special cases.
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Case 1. Y = S is smooth 1-dimensional, and f : X −→ S is flat. Let t be the local parameter for
O(S, 0) = C{t} and X0 = f−1(0) the zero-fibre. The exact sequence

0 −→ OX
t−→ OX −→ OX0

−→ 0

We get a long exact sequence

. . . −→ Ti
X/S(OX)

t−→ Ti
X/S(OX) −→ Ti(OX0

) −→ . . .

By base change, Ti
X/S(OX0

) = T i
X0

, so we get a sequence relating deformations of a fibre to deforma-
tions of the family.

Case 1. When f : X −→ Y is an embedding.

local situation

T i
X/Y = 0, T 1

X/Y ≈ NX/Y is the normal sheaf of X →֒ Y . The Zariski-Jacobi sequence of complexes

LY ⊗OX −→ LX −→ LX/Y

gives the usual Zariski-Jacobi sequence of T i’s:

0 −→ ΘX −→ ΘY ⊗ OX −→ NX/Y −→ T 1
X −→ T 1

Y (OX) −→ . . .

. . . −→ T k−1(OX) −→ T k
X/Y −→ T k

X −→ T k
Y (OX) −→ . . .

We see that if Y is smooth, we get isomorphisms

T k
X/Y = T k

X k ≥ 2

global situation

The global Zariski-Jacobi sequence :

0 −→ T0
X −→ T0

Y (OX) −→ T1
X/Y −→ T1

X −→ T1
Y (OX) −→ T2

X/Y −→ . . .

might look a little bit unfamiliar at first. The most interesting part of the sequence seems to be the
map

T1
X/Y −→ T1

X

It maps a deformation of X in Y to the deformation of just X . This implies: if T1
Y (OX) = 0, then all

deformations of X can be realised inside Y .

local-to-global

Let us see how we can compute the Tk
X/Y . Of course, there is again a spectral sequence doing the job:

Epq
2 := Hp(T q

X/Y ) =⇒ T
p+q
X/Y

The diagram looks like:
...

...
... . .

.

H0(T 2
X/Y ) H1(T 2

X/Y ) H2(T 2
X/Y ) . . .

H0(T 1
X/Y ) H1(T 1

X/Y ) H2(T 1
X/Y ) . . .

H0(T 0
X/Y ) H1(T 0

X/Y ) H2(T 0
X/Y ) . . .
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which reduces to
...

...
... . .

.

H0(T 2
X/Y ) H1(T 2

X/Y ) H2(T 2
X/Y ) . . .

H0(NX/Y ) H1(N 1
X/Y ) H2(NX/Y ) . . .

0 0 0 . . .

From this we read off:
H0(NX/Y ) = T1

X/Y

0 −→ H1(N 1
X/Y ) −→ T2

X/Y −→ H0(T 2
X/Y ) −→ H2(NX/Y ) −→ . . .

This tells us a familiar thing: infinitesimal deformations of X in Y correspond precisely to global
sections of the normal sheaf. The obstruction space T2

X/Y contains the familiar H1(NX/Y ), but also

something else. What can we say about H0(T 2
X/Y )? As NX/Y = Hom(I /I 2,OX), one would guess,

that T 2
X/Y should be related to Ext1(I /I 2,OX). In fact it usually is:

T
X/Y

0 = 0, T
X/Y

1 = I /I 2

and the other T
X/Y

k are concentrated at the nonregular part of the map X −→ Y . So if the regular
part is dense, then

T 2
X/Y = Ext1(I /I 2,OX) .

In general there will also a term Hom(T
X/Y

2 ,OX) spitting in the soup . . . .

We conclude that when Y is smooth, and T 2
X = 0, then

T1
X/Y = H0(NX/Y )

T2
X/Y = H1(NX/Y )



Chapter 19Solving the Deformation Equation
In ?? we encountered the deformation equation

∇ω + 1
2 [ω, ω] = 0

The integrability condition for a deformed complex structure on a compact complex manifold leads
to the equation of Kuranishi:

∂θ + 1
2 [θ, θ] = 0

The equation ∂ ◦ ∂ = 0 in the cotangent complex can be thought of as to correspond to the equation
f.r = 0 in the resolution

0 −→ OX
f←− P k r←− P l

In all these cases one ends up with the following structure; a complex (K∗, d) with the structure of a
graded Lie-algebra. Usually the cohomology groups H0(K∗), H1(K∗), H2(K∗) have interpretations
as infinitesimal automorphisms, infinitesimal deformations, and obstructions.

For an element ω ∈ K1 one can write down the equation

dω + 1
2 [ω, ω] = 0

Problem 19.1. Find the most general solution to this equation. This solution will represent the
versal object we are looking for.

“Theorem” 19.2. The versal solution space is isomorphic to the fibre of a map

Ob : H1(K∗) −→ H2(K∗) .

There is an abstract ”proof” of this theorem, which involves a splitting and an implicit function
theorem.

The splitting. Let Zi = ker(Ki −→ Ki+1), Bi = Im(Ki−1 −→ Ki), Hi = Zi/Bi. Suppose that
have splittings

Ki = Zi ⊕Ai

Zi = Bi +Hi

The strategy is to proof that
{ω ∈ H1 +A1 | dω + 1

2 [ω, ω] = 0}
has the structure of a finite dimensional analytic space.
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Of course, for this to work, we will need the Sclessinger condition (H3): dimH1 <∞.

Using the splitting of K2, the deformation equation splits into three parts:

dω + 1
2πB2 [ω, ω] = 0(1)
1
2πH2 [ω, ω] = 0(2)
1
2πA2 [ω, ω] = 0(3)

Here πV : K1 −→ V is the projection on a subspace V (note that dω ∈ B2).

As to the Implicit Function Theorem, it is well known that it does not hold for in general for infinite
dimensional linear spaces. For each specific deformation problem one has to put a suitable analytic
structure on the Ki.

The left-hand side of equation (1) defines a map D:K1 → B2, whose linearisation (=derivative) at at
the origin is d. Using an implicit function theorem, one would get an isomorphism F from Z1 from a
neighbourhood U of the origin in Z1 onto a neighbourhood of the origin in the solution set of (1).

Define
S = {ω ∈ H1 ∩ U | πH2 [ω, ω] = 0 } .

The space S is contained in the finite-dimensional vector spaceH1, and this gives the complex structure
we are after.

The third equation gives no further conditions, because for small ω it follows from the first two. To see
this, we remember that d maps A2 isomorphically to B3, and compute dπA2 [ω, ω] = d[ω, ω] = 2[dω, ω]
by the compatibility of d and the bracket. By (1) this again is equal to −[πB2 [ω, ω], ω] = [πA2 [ω, ω], ω],
where we use (2) and the decomposition 1 = πB2 + πH2 + πA2 . As d|A2 is invertible we have, writing
ψ for πA2 [ω, ω], the equation ψ = (d|A2)−1[ψ, ω] and by continuity there is a constant C, independent
of ψ and ω, such that:

||ψ|| ≤ C||ψ|| ||ω||.
Therefore, for ||ω|| small enough we have ||ψ|| < ||ψ||, or πA2 [ω, ω] = 0.

In several situations this strategy was made to work, e.g. for compact complex manifolds by Kuranishi
(in his second proof) and for compact complex spaces by Palamodov.

The existence of analytically versal deformations is known for

• compact complex manifolds:
Kuranishi gave two proofs.

• isolated singularities:
the first proof is due to Grauert, using power series methods. The proof of Pourcin uses Banach-
analytc techniques.

• compact complex spaces:
proofs by Grauert en Palamodov.

• vector bundles/ sheaves on a fixed complex space.

• The most general results are obtained by Bingener developping Palamodov’s techniques further.
As application he proves the case of deformations of π: (X̃, E) → (X, p) where p is a point
modification with exceptional set E.

The proofs are of no use if one wants to compute versal deformations. Once the existence is established
it suffices to compute formally: we quote the following useful result:
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Theorem 19.3. Suppose a versal deformation exists. Let X −→ S be a family which is formally
versal. Then it is versal. Moreover, a miniversal object exists.

Some of the proofs mentioned above also prove openness of versality. The above theorem shows that
the folowing weak form suffices, which is known in all the cases above.

Principle 19.4 (Openness of versality). Let π : X −→ S be a map. The set of points s ∈ S where
π is formally versal is Zariski-open.

Power series Ansatz

We start with a one parameter solution of the deformation equation which we develop in a power
series. We write

ω = tω1 + t2ω2 + t3ω3 + . . .(4)

In this formula t is a parameter, which we use in a naive sense. We substitute this expression in the
deformation equation:

t dω1 + t2 dω2 + . . .+ 1
2 [tω1 + t2ω2 + . . . , tω1 + t2ω2 + . . .] = 0

Collecting powers of t we find the equations:

0 = dω1

0 = dω2 + 1
2 [ω1, ω1]

0 = dω3 + [ω1, ω2]

...

0 = dωn + 1
2

∑n−1
i=1 [ωi, ωn−i].

The first equation states that ω1 is a cocycle, in accordance with the fact that the equivalence classes
of first order infinitesimal deformations are given by H1(K∗). The second equation gives the primary
obstruction: the condition for extending ω1 is that the cocycle [ω1, ω1] is a coboundary; in other
words, if the cohomology class of [ω1, ω1] in H2(K∗) is zero, one can find a ω2, which is determined
up to cocycles. The secondary obstruction is only defined, if ω2 can be found; we can still change the
specific choice of ω2, giving an indeterminacy, characteristic of Massey triple products.

This procedure tries to find a curve in the solution space, and the higher-order obstructions depend on
the choices made in earlier steps. Instead we shall try to find the ‘general’ solution by a multivariable
power series Ansatz. We should clarify the meaning of ‘general’ solution. The best way to do that
uses the categorical language of formal deformation theory, but we do not go into this now.

Let dimH1(K∗) = τ (τ because for isolated complete intersection singularities the dimension of T 1

is calle dthe Tyurina number), and choose representatives ω1, . . . , ωτ ∈ C1(K∗) of a basis, where
C1(K∗) is a fixed complement to the 1-coboundaries B1(K∗) ⊂ K1. Let t = (t1, . . . , tτ ) be the
corresponding coordinates. We construct the local ring S of the solution space as quotient of C[[t]];
let mτ be its maximal ideal. Over S1 := C[[t]]/m2

τ we have the solution
∑
tiωi. To find the higher

order terms, we write, similarly to (4):

ω =
∑

|α|≥1

tαωα ,

where this time we use a multivariable power series, and multi-index notation, so tα = tα1

1 · · · tατ
τ . The

primary obstruction comes from:
∑

|α|=2

tα dωα + 1
2

∑

|i|=|j|=1

titj [ωi, ωj ] = 0.(5)
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We can express the class of [ωi, ωj ] in H2(K∗) in terms of a basis Ω1, . . . , Ωs as

cl([ωi, ωj]) =
∑

k

ckijΩk .

The equation (5) is solvable if and only if

g
(k)
2 := 1

2

∑

|i|=|j|=1

ckij t
itj = 0 , for k = 1, . . . , s.

It is possible that some (or all) g
(k)
2 are zero, even if dimH2(K∗) > 0. Set

S2 = C[[t]]/(g2) + m
3
τ

and choose a basis B2 of monomials for m2
τ/(g2) + m3

τ ; this can be done with a standard basis of the
ideal (g2). We will denote the set of exponents of these monomials also with B2. Over S2 we can solve
(5): there are ωα ∈ C1(K∗), with α ∈ B2, such that

∑

α∈B2

tα dωα + 1
2

∑

|i|=|j|=1

titj [ωi, ωj ] ≡ 0 (mod g2).

The ωα are not unique, but determined up to elements ψα ∈ C1(K∗) with dψα = 0. The possible lifts
form a homogeneous space under H1(K∗). For the next step we have to solve the equation:

∑

|α|=3

tα dωα +
∑

|i|=1

α∈B2

titα [ωi, ωα] ≡ 0 (mod g2).(6)

Note that although the ideal (g2) is defined in C[[t]]/m3
τ , the ideal mτ (g2) ⊂ m3

τ/m
4
τ is well-defined and

does not depend on the extension of (g2) to C[[t]]/m4
τ . By computing the class of [ωi, ωα] in H2(K∗)

we have again messy Massey products. Write cl([ωi, ωα]) =
∑

k c
k
iαΩk. This gives:

g
(k)
3 =

∑

|i|=1

α∈B2

ckiαt
itα,

which defines the extension of (g2).

Claim 19.5. The equations g
(k)
2 + g

(k)
3 , k = 1, . . . , s, are the equations of the versal solution space

up to third order.

This means that we can solve (6) over C[[t]]/(g2 + g3) + m4
τ . One continues in this way. The problem

with a power series Ansatz is that the process may never end. The computation will however always be
finite, if our problem is graded, and we only consider deformations of negative degree. The convention
is here that a deformation corresponds to a ∂/∂ti, so the parameters ti have positive weight, and
therefore we have a bound on the possible exponents α. This means that we just with polynomials of
a fixed total degree in space and deformation parameters.



Chapter 20Computation for hypersurfa
es
Let X ⊂ Pn be a hypersurface of degree d, defined by some homogeneous polynomial f ∈ k[x0, . . . , xn].

Problem 20.1. What is the dimension of TX?

With the same methods this problem can be solved more generally for X a complete intersection in
Pn.

Note also that no assumptions are made on the type of singularities of X .

The basis of the calculation is the global Zariski-Jacobi exact sequence for an embedding X ⊂ Y :

0 −→ T0
X −→ T0

Y (OX) −→ T1
X/Y −→ T1

X −→ T1
Y (OX) −→ T2

X/Y

As Y is smooth and X , being a hypersurface, has only locally complete intersection singularities we
have by ??

Ti+1
X/Y = Hi(NX/Y ) i ≤ 0 .

The normal sheaf NX/Y is of course OX(d) which occurs in the exact sequence defining X :

0 −→ O
f−→ O(d) −→ OX(d) −→ 0 .

We are going to use its long exact cohomology sequence, so we need to know the Hi(O(k)).

Result.

i = 0 : dimH0(O(k)) =
(
n+k

k

)

and by Serre duality:

i = n : Hn(O(k)) ∼=
(
H0(O(−n− 1− k))

)∗

All other groups Hi(O(k)) vanish.

The number
(
n+k

k

)
is the number of monomials of degree k in x0, . . . , xn. We count them as follows:

given a monomial xα0

0 · · ·xnαn write

× . . .×︸ ︷︷ ︸
α0

o× . . .×︸ ︷︷ ︸
α1

o . . . o× . . .×︸ ︷︷ ︸
αn
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We have now written k + n = α0 + · · ·αn + n symbols. Conversely any choose of positions for the n
symbols o determines the monomial so there are

(
n+k

n

)
different monomials.

Using the long exact sequence

0 −→ H0(O(d)) −→ H0(OX(d)) −→ H1(O) −→

we see that Hk(OX(d)) = 0 for k ≥ 1 while dimH0(OX(d)) =
(
n+d

d

)
− 1. Therefore

dim Ti+1
X/Y =

{(
n+d

d

)
− 1, for i = 0,

0, for i > 0.

So now we concentrate on T0
Y (OX) and T1

Y (OX). One has

Ti
Y (OX) = Hi(Θ⊗ OX) .

If one sees the tangent sheaf one has to use the Euler sequence

0 −→ O −→ O(1)⊕n+1 −→ Θ −→ 0 .

In its dual form it reads
0 −→ Ω −→ O(−1)⊕n+1 −→ O −→ 0 .

Let e0, . . . , en be a basis of O(−1)⊕n+1. The first map is given by

d(
xi

xj
) 7→ xjei − xiej

x2
j

and the second one by (e0, . . . , en) 7→∑
xiei. Tensor the exact sequence

0 −→ O(−d) f−→ O −→ OX −→ 0

with the locally free sheaf Θ to obtain

0 −→ Θ(−d) −→ Θ −→ Θ⊗ OX −→ 0 .

We first look at H1(Θ⊗ OX) in the long exact sequence

H1(Θ) −→ H1(Θ ⊗ OX) −→ H2(Θ(−d)) −→ H2(Θ) .

We claim that H1(Θ) = H2(Θ) = 0. This follows from the Euler sequence:

H1(O(1)⊕n+1) −→ H1(Θ) −→ H2(O) −→ . . .

with the fact that Hi(O) = 0 and Hi(O(1)) = 0 for i ≥ 1. By the way, this shows that Pn is rigid.
We even have that Hi(Θ) = 0 for i ≥ 1.

We know now that H1(Θ ⊗ OX) = H2(Θ(−d)). To compute this last group, we twist the Euler
sequence by O(−d):

0 −→ O(−d) −→ O(1 − d)⊕n+1 −→ Θ(−d) −→ 0

and look at its long exact sequence:

H2(O(1 − d))n+1 −→ H2(Θ(−d)) −→ H3(O(−d)) −→ H3(O(1− d))n+1

and conclude that H2(Θ(−d)) = 0 if n 6= 2, 3. This means that T1
X/Y ։ T1

X and we have:

Proposition 20.2. All deformations of a hypersurface in Pn are obtained by just perturbing the
equation if n 6= 2, 3.
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If n = 3 we look at the Serre dual and get

0←−
(
H2(Θ(−d))

)∗ ←− H0(O(d− 4)) −→ H0(O(d− 5))4 .

If d = 4 then H0(O(d− 5)) = 0 and dimH2(Θ(−4)) = 1. The case of quartic surfaces is the K3-case.
There is an 19-dimensional family of embedded deformations, whilst the dimenion of T 1

X is 20. The
missing one is dimH2(Θ(−4)).

If d > 4 the multiplication map H0(O(d− 5))4 −→ H0(O(d− 4)) given by (ϕ0, ϕ1, ϕ2, ϕ3) 7→
∑
xiϕi

is surjective so H2(Θ(−d)) = 0.

Theorem 20.3. All deformations of hypersurfaces in Pn are embedded if n ≥ 4 or n = 3 and d 6= 4.

Plane curves

Of course for a curve to be plane is a very special property for that curve.

Now we look at the sequence

H2(O(−d)) −→ H2(O(1− d)3) −→ H2(Θ(−d)) −→ 0

or in its Serre dual form

0 −→ H2(Θ(−d))∗ −→ H0(O(d− 4))3
Φ−→ H0(O(d− 3))

with Φ: (ϕ0, ϕ1, ϕ2) 7→ x0ϕ0 + x1ϕ1 + x2ϕ2. In general, for d ≥ 5 the kernel of Φ is huge.

1. Compute dimH2(Θ(−d)) and find dimH1(ΘX). Note that the answer (3g−3) holds also for singular
plane curves.



Chapter 21Simultaneous Resolution
Let us take a look at the A1-surface singularity.

-2

Vanishing Cycle (-2) CurveA    Singularity1

We can deform the A1-singularity x2 + y2 + z2 = 0 to x2 + y2 + z2 = s. The fibre Xs is a smooth
hyperboloid. As s goes to zero, a 2-sphere gets contracted to the singular point. On the other hand
we can resolve the singularity by replacing the singular point by an exceptional curve E, a copy of
P1, with self intersection −2. These two smooth spaces do not only look the same in the picture, they
are in fact diffeomorphic. This phenomenon is not unique to the A1-singularity. We will explain that
this phenomenon characterises the A−D − E singularities.

Definition 21.1. Let (X, p) be an isolated singularity.

π : (X̃, E) −→ (X, p)

is called a resolution if

• X̃ is a smooth complex space

• The map π is proper

• The map π induces an isomorphism outside E:

X̃ \ E π−→ X \ {p}

• codim eX(E) ≥ 1
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The set E is called the exceptional set of the map π, as E is constracted to the singular point p by π.
When we understand a singularity really as a germ, rather than as a representative, then the manifold
X̃ should be considered as a germ of a manifold along E.

Any singularity can be resolved. If (X, p) is a surface singularity, there exists a unique minimal
resolution. The A −D − E singularities have miinimal resolutions, whose exceptional sets E consist
of a union of curves Ei, euch of which is isomorphic to P1. These E1 intersect in the way indicated
below:

A

A

A

1

2

5

D

D

4

8

To encode the combinatrics, one usually writes down dual graphs, whose vertices correspond to ir-
reducible exceptional curves and for each point of intersection between two curves there is an edge
connecting the corresponding vertices. For an A−D−E singularity one obtains in this way the well
known Dynkin diagram with the same name. These singularities are very special and we do not want
to give the impression that these are in some sense all. A generic dual graph might look as follows
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-5

-7 -6 -5

-4

[3]

Here the numbers like −7, −8, etc, indicate the self intersection of the corresponding exceptional
curve. The [3] below a dot means that the corresponding curve has genus three. There can be loops
in the graph, even more than one edge between vertices, indicating that the corresponding curves
intersect more than once. It is standard practice not to write self intersection if it is −2, and not
write the genus if it is zero. There is one necessary and sufficient condition for such a graph to occur
as resolution graph of some singularity: the matrix (Ei · Ej) should be negative definite. This is a
theorem of Grauert.

Exercise in graph theory. A −D − E graphs are the only negative definite graphs with only −2
dots.

Definition 21.2. A surface singularity (X, p) is called rational if the scheme theoretic inverse image
of p has arithmetic genus zero.

Let π: X̃ → X be a resolution of a normal surface singularity. What is the relation between deforma-
tions of X̃ and of X?

Suppose X̃S −→ S is a 1-parameter deformation of X̃. Note that if (X, p) is a normal surface sin-
gularity, then one can reconstruct the local ring of the singularity by taking global section on the
resolution:

H0(X̃,O eX) = H0(X,OX)

Let us try to do this in a family. One obtains a space YS −→ S taking H0(X̃S ,O eXS
) as structure

ring. This is called the Remmert-reduction. The map to S factors over YS :

X̃S −→ YS −→ S

If the special fibre Y0 is isomorphic to X , then one gets in this way a deformation of X .

Theorem 21.3. The fibre Y0 is isomorphic to X if and only if

H1(X̃S ,O eXS
) is S-flat.

So we get a flat deformation of X if the (upper semi-contiuous) function

s 7→ H1(X̃s,OXs
)

is constant. For a rational singularity one has H1(O eX) = 0, and hence this condition of constancy is
always fulfilled.

We are going to deform X̃. As it is a smooth space we have to look at the cohomology of Θ eX :

dimH1(Θ eX) =? H2(Θ eX) = 0

We conclude that the versal base space is smooth.
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Let Ei be an irreducible exceptional curve. There is a surjection

Θ eX −→ NEi
−→ 0

Define the rank 2 bundle S of logarithmic vectorfields by the exact sequence

0 −→ S −→ Θ eX −→ ⊕NEi
−→ 0

Alternative notation: Θ(logE), as it is dual to sheaf Ω1(logE) of logarithmic 1-forms. Locally, near
the intersection of two curves, S is generated by x∂x and y∂y. Easy estimate for H1(Θ eX): we have
a surjection

H1(Θ eX) −→ H1(NEi
) −→ 0

as any H2(coherent) = 0 on X̃. If Ei ≈ P1, E2
i = −2 then NEi

= OP1(−2). Hence

H1(NEi
) = C

For A−D − E we get

h1(Θ eX) ≥ number of curves in resolution

For Ak, Dk Ek in fact equality holds, and h1(Θ) is just k. Recall from ?? that for X of type A−D−E
this is also the dimension of T 1

X .

So we see that for general rational surface singularities one gets a map from the versal base space B eX

of X̃ to that of X
B eX −→ BX

For X of type A −D − E both spaces have dimension k. What is this map? For X = A1 it a map
between two smooth 1-dimensional germ. We will see that B eX −→ BX is the squaring map t 7→ s = t2.

B

BX

X~

So the map T1
eX
−→ T 1

X on the level of tangent spaces is the zero map.

For the A1-singularity one can see the map from the theory of flops for threefolds. The singularity
xy − z2 + t = 0 becomes after squaring isomorphic to Y :xy − uv = 0 (set z + t = u, z − t = v). A

resolution Ỹ of Y is obtained by closing the graph of the function x/u:Y → P1. The exceptional set
E is one-dimensional (just the P1 above the origin), so this is a so-called small resolution. An other
choice is to take the function x/v = y/u. In the original coordinates this is the choice between z + t
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and z − t. The function t has as zero fibre on Ỹ a resolution of X . Both possible deformations are
not the same but they induce the same deformation of X . The same picture holds more or less for
the other A–D–E singularities.

To study the deformation of the resolution we look at the inverse image of the discriminant in the
base space of X , so at points for which the fibre blows down to one or more singularities.

Consider an effective divisor D ⊂ X̃, and suppose we can lift D to a relative divisor DS ⊂ X̃S .
The number of irreducible components of the divisor Ds ⊂ X̃s can change, but the self-intersection
(Ds ·Ds) is constant.

D 0 Ds

-2

-2

-2

Suppose that Ds is irreducible and reduced for s 6= 0. Then h0(ODs
) = 1. To what sort of divisors

on X̃ can such an Ds specialize? For a rational surface singularity, 0 = H1(O eX) −→ H1(OD) −→ 0.
So 1 = χ(OD) = − 1

2D(D −K). If E ≈ P1 and E2 = −2, then −2 = E(E −K), so K · E = 0, from
which we see that for X of type A −D − E one has K = 0. Hence, the divisors with χ(OD) = 1 we
were looking for are those with D2 = −2. It is a question of graph theory/combinatorics to find all
such divisors. The elements D in the A − D − E lattice ⊕k

i=1Z[Ei] with D · D = −2 are called the
roots of the root system. The Weyl group is generated by reflections in these roots.

Let us look at deformations over which a given root D lifts. We deform D → X̃ so we have the exact
sequence of deformation functors

DefD/ eX −→ DefD→ eX −→ Def eX

In the long exact sequence for the Ti we have TI+1 = Hi(ND), and as D is a curve of arithmetic
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genus zero and D2 = −2, ND = OD(−2) and H0(ND) = 0, while H1(ND) = C. We obtain therefore

0 = T1
D/ eX

−→ T1
D→ eX

−→ T1
eX

−→ T2
D/ eX

−→ T2
D→ eX

−→ T2
eX

= 0

‖ ‖

H1(Θ eX) −→ H1(ND)

One can even identify T2
D→ eX

with the H2 of a coherent sheaf on X̃ so in fact the map to H1(ND) is
surjective.

Conclusion. There is a codimension one subspace BD→ eX ⊂ B eX over which the root D lifts to X̃.

At a general point of BD→ eX the curve D is smooth and blows down to an A1 singularity. Locally
there the map to BX is the squaring map.

We have a diagram
B eX −→ BXx

x

BD→ eX −→ ∆

where ∆ is the discriminant, the locus of non smooth fibres.

Theorem 21.4.
BX
∼= B eX/W

where W is the Weyl group of the appropriate type, which acts on B eX by reflections in the hyperplanes
BD→ eX .



Chapter 22Cubi
 Surfa
es
Let X be a surface singularity and X̃ its resolution. One can ask the question whether deformations
of X correspond to deformations of X̃ and vice versa. In general this is not the case.

Example 22.1. Consider the hypersurface singularity Ẽ6 in (C3, 0) given by x3 + y3 + z3 = 0. This
is not an A–D–E singularity: it has multiplicity 3 and it is the cone over a smooth elliptic curve in
P2, just as A1 is the cone over a smooth conic in P2.
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How to get a resolution of X? The answer is: blow up C3 in the point {0}. The picture now looks
like:

The exceptional curve is the elliptic curve we started with. One way to deform X̃ is by changing the
structure of the elliptic curve. This are the deformations which blow down. The singularity is not
rational, in fact dimH1(X̃,O eX) = 1. Other deformations of X̃ do exist but they change H1(X̃,O eX).

So we do not get many deformations of X by deforming just X̃ .
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Of course X itself has a lot of deformations: dimT 1
X = 8 and a basis of T 1

X consists of the monomials

1, x, y, z, yz, xz, xy, xyz.

The last monomial gives the deformation x3 + y3 + z3 + txyz which means changing the elliptic curve.
The versal deformation is given by the formula

x3 + y3 + z3 + t0 + t1x+ t2y + t3z + t4yz + t5xz + t6xy + t7xyz .

A fibre of this deformation will be an affine cubic surface. Therefore the following questions are
equivalent:

which singularities can appear in a fibre of a deformation of Ẽ6 ?
m

which singularities can appear on a cubic surface in P3 ?

We can generalise the question and pose the

Problem 22.2. What kind of isolated singularities can appear on a projective surface of degree d in
P3 ?

A general upper bound for the number of singularities of specified types in all dimensions is provided by
Varchenko’s estimate [A-G-V] whereas for A–D–E singularities on surfaces an asymptotically better
estimate is available (Miyaoka-Yau). The situation for ordinary double points (A1-singularities) on
surfaces of low degrees is:

degree #A1’s
2 1
3 4
4 16
5 31
6 65
7 unknown!

Dynkin diagram

For the A–D–E singularities we obtained the A–D–E diagram as resolution graph. By the existence
of a simultaneous resolution one can equally well consider the topology of a smooth fibre and this
gives the correct generalisation for non-rational singularities. So we consider the Milnor fibre: let
f : Cn+1 → C be a polynomial function with a singularity at the origin, take a small closed ball with
center at the origin and intersect the fibre f = t for t very small with the closed ball. The resulting
smooth real 2n-dimensional manifold with boundary is by definition the Milnor fibre.

Example 22.3. Consider the curve singularity D4:x
3 + y3. To get a better real picture of the zero

set we take the real form x3 − xy2. As the singularity is quasi-homogeneous we can take a large ball
and t = 1 so we look at the intersection of the affine part x3 − xy2 = 1 of an elliptic curve with a
large ball. We get a Riemann surface F of genus one with three holes coming from the three points
at infinity:
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The cycles in the picture generate H1(F,Z) and intersect according to the D4 graph.

Cubic surfaces

Similarly to the D4 example we now want to look at the affine part F of a cubic surface. One can see
cycles which intersect according to the Ẽ6 diagram:

u u u

u

u

u u

A smooth cubic surface contains 27 lines.
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One obtains a cubic surface by blowing up P2 in six points p1, . . . p6, not all on a conic and not three
on a line. The vector space of polynomials of degree 3 vanishing in p1, . . . p6 has dimension four and
the choice of a basis {ϕ0, ϕ1, ϕ2, ϕ3} gives rise to a rational map

(ϕ0 : ϕ1 : ϕ2 : ϕ3): P
2 −→ P3 .

hier moet meer uitgelegd worden

Singular cubics are obtained by taking the six points special. For the four nodal cubic we take the
six vertices of a complete quadrilateral. Upon blowing up the six vertices the strict transforms of the
four sides are disjoint curves of self-intersection −2 but the polynomials of degree three intersect the
lines only in the base points so the map to P3 blows the lines down to A1 singularities.

-2

-2 -2

-2

The four disjoint (−2)-curves can be seen in the Ẽ6-diagram:
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w e w

e

w

e w

This illustrates that we get a similar game as with the A–D–E singularities.

• How to get the singularities on a cubic surface which is not the cone over an elliptic curve?

• Apply the following operation on the Ẽ6 diagram

– remove some points

– remove the edges adjacent to them

• What is left is the Dynkin diagram of (maybe several) A–D–E singularities.

Theorem 22.4. You get them all this way!

The explanation of this phenomenon using the deformation theory of Ẽ6 was done in the 70’s by
Eduard Looijenga.

2. Make the list.



Chapter 23Calabi-Yau threefolds
We have seen that the basic properties of elliptic curves can be generalised in different ways to surfaces,
giving tori on the one hand and K3-surfaces on the other. We now take the step to threefolds and
study the analogues of K3-surfaces.

Definition 23.1. A smooth complex 3-dimensional manifold X is called a Calabi-Yau threefold if
ωX
∼= OX and H0(Ω1

X) = H0(Ω2
X) = 0.

The Chern numbers are:

c1 = 1− g
c21 + c2

2
= 1− q + pg

c1c2
24

= 1− h1 + h2 − 1

The motivition from physics to look at such manifolds is that our univers is not four dimensional but
U = R1,3×M6 where M6 is a manifold with a diameter in the order of ε = 10−33cm so one can think
of ε2 being zero. The space M6 should have a Ricci-flat metric which implies c1 = 0. Yau proved the
Calabi-conjecture that conversely Ricci-flat implies c1 = 0.

For Calabi-Yau threefolds we find the following invariants. Write a = h1(Ω1), b = h2(Ω1). By Serre
duality

(
H1(Ω1)

)∗
= H1(Θ) so the number b is also the number of deformation parameters, while the

obstructions land in a space of dimension a, the number of divisors. The Hodge diamond looks like

1

0 0

0 a 0

1 b b 1

0 a 0

0 0

1

The Euler number is given by e = 2(a− b). In the following table we list e and a for some classes of

93



CHAPTER 23. CALABI-YAU THREEFOLDS 94

examples.
example e a

1) double octics −296 1
2) quintics in P4 −200 1
3) (2, 4) in P1 × P3 −168 2
4) (3, 3) in P2 × P2 2

...
N) elliptic fibre product 0 ∼ 20

A double octic solid is a double cover of P3 branched along an octic surface. The symbol (2, 4) in
P1 × P3 means a divisor of type (2, 4) on the fourfold P1 × P3. In general, in a fourfold X with −KX

a general anticanonical divisor is a smooth Calabi-Yau.

The construction of the last example starts with two elliptic surfaces E1, E2 with K = −F , given
by a pencil of plane cubics. We define the threefold as fibre product of the surfaces: E1 ×P1 E2 =
{(e− 1, e2) ∈ E1 × E2 | π1(e1) = p2(e2)}.

E1 ×P1 E2

ւ ց

E1 E2

π1 ց ւ π2

P1

For a very ample section of a fourfold the cohomology agrees up to h2 with that of the fourfold as an
immediate consequence of the exact sequence

0 −→ O(−D) −→ O −→ OD −→ 0 .

This shows that a = 1 for quintics in P4. But the physicists tell us that that the distribution of the
numbers (a, e) looks like:

a

e
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . .. . . . . . .. . . . . . . .. . . . . . . . .

. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . .. . . . . . . . . .

We can get higher values for a on singular quintics, take e.g. the quintic with an equation of the form

x0F0 + x1F1 = 0.

It has in general 16 singular points, namely where x0 = F0 = x1 = F1 = 0.

What happens if we impose a node?

Let X0 be a quintic with a node in the point P . Resolve the singularity by blowing up the point P .
Locally at P the threefold is isomorphic to the cone over a smooth quadric, so the exceptional divisor
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is a quadric Q ∼= P1 × P1:
Q −֒→ X̃
y

y

P −֒→ X0

The quadric Q in X̃ can be blown down along either ruling to a threefold which is still smooth, but
might not be projective. The exceptional set in the new threefold is a rational curve with normal
bundle O(−1) ⊕ O(−1). This is a so called small resolution and we get two of them fitting in the
following diagram:

X̃

ւ ց

X1 X2

ց ւ

X0

The singular quintic is a degeneration of a smooth threefold Xt and if we compare Euler numbers we
see that it goes up by two: e(X1) = e(X2) = e(Xt) + 2.

So it is interesting to look at rational curves on Calabi-Yau threefolds. Let C ∼= P1. In the normal
bundle sequence

0 −→ ΘC −→ ΘX |C −→ NC/X −→ 0

we have that ΘC = O(2) and −→ ΘX |C splits as O(a1) ⊕ O(a2) ⊕ O(a3) with a1 + a2 + a3 = 0,
so deg NC/X = −2 and therefore NC/X = O(a) ⊕ O(−a − 2). In the generic case one expects that
a = −1, as in the example coming from the small resolution. In this case both H0(C,NC/X) and
H1(C,NC/X) vanish. This implies that “curves do not deform”. Examples exist where curves do
deform (there a 6== 1), but on a “generic” Calabi-Yau rational curves are rigid.

Let us look at quintics that contain a line, e.g. x0 = x1 = x2 = 0. The equation of the quintic Q has
then the form

x0Q0 + x1Q1 + x2Q2 = 0

with the Qi quartic forms. We can compare the normal bundle of the curve in Q with that in P4:

0 −→ NP1/Q −→ NP1/P4 −→ NQ/P4 |P1 −→ 0

0 −→ NP1/Q −→ ⊕2
i=0 O(1) −→ O(5) −→ 0

(x0, x1, x2) 7−→ ∑
xiQi

This gives the exact sequence

0 −→ H0(N ) −→ ⊕2
i=0H

0(O(1)) −→ H0(O(5)) −→ H1(N ) −→ 0
6 6

which shows that depending on the rank of the map in the middle the normal bundle can be O(−1)⊕
O(−1) or O ⊕ O(−2).

An example of a familiy of lines is provided by the Fermat quintic x5
0 + x5

1 + x5
2 + x5

3 + x5
4 = 0 which

contains the lines {(u,−u, av + bv + cv) | a5 + b5 + c5 = 0}.
In general one expects a finite number of curves for each degree. For the generic quintic this is

d # of curves

1 2875
2 609250
3 317206375



Chapter 24T 1{lifting property
Let X be a smooth Calabi-Yau threefold. Then the dualising sheaf ωX is isomorphic to OX and
consequently ΘX

∼= Ω2
X . Therefore we know the dimensions of the cohomology groups which are

relevant for deformation theory. Recall that the Hodge diamond looks like

1

0 0

0 a 0

1 b b 1

0 a 0

0 0

1

Therefore
T1

X = H1(ΘX) = H1(Ω2) = Cb

T2
X = H2(ΘX) = H2(Ω2) = Ca

The general theory tells us that the base space BX of the versal deformation of X is the fibre
vp−1(0) of a map of germs

ϕ = ob: (T1
X , 0) −→ (T2, 0) .

Here we are in a lucky case: the map ϕ is identically zero and the base space BX is smooth.

Theorem 24.1 (Bogolomolov, Tian, Todorov). If X is a smooth Calabi-Yau manifold, then the
miniversal base space (also called Kuranishi space) BX is smooth.

Proof. Suppose that BX is singular. Consider a nearby point P .
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P

B

0

X

Then the Zariski tangent space to BX at the point P has smaller dimension then the Zariski tangent
space at 0. But T0BX = T1

X = Cb and TPBX = T1
XP

where XP is the threefold parametrised by

the point P . But also dim T1
XP

= Cb as a and b are toplogical invariants (dim H2(X,C) = a and
dimH3(X,C) = 2b+ 2) which do not change in a family.

The problem with this proof is that we might not be able to find a point P as in the picture. Consider
instead a family XS → S. Then we have the group T1

XS/S of infinitesimal deformations of XS over

S. Let as usual D = Spec(C[ε]/ε2) and consider the diagram

X −֒→ XS −֒→ X ′S ←− something
y

y
y

y

{0} −→ S −֒→ S × D ←− {0} × D

In this way one obtains a natural map T1
XS/S → T1

X . If we take S = C{t} we can look at multiplication
with t:

0 −→ OXS

.t−→ OXS
−→ OX −→ 0

and the corresponding long exact sequence

T1
XS/S

.t−→ T1
XS/S −→ T1

X −→ T2
XS/S

.t−→ . . .

T1-lifting principle. If the maps T1
XS/S → T1

X are surjective for all S then the base space BX is
smooth.

This principle was formulated by Ziv Ran. It can also be considered as an instance of a “T 2-injecting
principle”.

Consider any deformation functor D( . .) satisfying the Schlessinger conditions and look at three types
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of Artinian algebras:

An = k[t]/tn+1 • • • • • •︸ ︷︷ ︸
n+1

Bn = k[t, ε]/(tn+1, ε2)
• • • • • •
• • • • • •︸ ︷︷ ︸

n+1

Cn = k[t, ε]/(tn+1, tnε, ε2)
• • • • •
• • • • • •︸ ︷︷ ︸

n+1

where Cn = Bn−1 ×An−1
An. Fix an element Xn ∈ D(An). Then

T 1(Xn/An) := {Yn ∈ D(Bn) | Yn|An = Xn} .

Lift Xn ∈ D(An) to Xn+1 ∈ D(An+1). Together with a given Y ∈ T 1(Xn/An) this lift defines a
deformation over Cn+1, just by glueing the deformation.

T1-lifting principle. The complete local ring R of the versal base (the “hull”) is smooth if always
T 1(Xn+1/An+1) ։ T 1(Xn/An), i.e. D(Bn+1) ։ D(Cn).

Let R be the versal base. If
0 −→ I −→ A′ −→ A −→ 0

is a small extension of rings (mAI = 0), then XA = j∗XR for some map j:R → A Now consider the
diagram of a lifting

↑

R
j−→ A

ց ↑

A′

Formal smoothness of R means, that any such j can be lifted to some j′ : R −→ A′, and in this way
one obtains a lift XA′ = (j′)

∗
XR ∈ D(A′). Conversely, versality means, that any XA′ ∈ D(A′) that

lifts XA can be induced by some j′ that lifts j. In fact, formal smoothness is equivalent to or defined
as the property that every map j can be lifted to a j′, so the principle states that one can check this
using not all A and A′, but only the special rings Bn+1 and Cn.

In order to apply the above to Calabi-Yau threefolds we first recall some results on cohomology and
base change (see [Ha]). We start with S = C[[t]] and an S-flat S-module Ms. We have the exact
sequence

0 −→MS
·t−→MS −→M −→ 0

with its long exact sequence

−→ . . .Hk(MS)
·t−→ Hk(MS) −→ Hk(M) −→ Hk+1(MS)

·t−→ Hk+1(MS) −→ . . .

Proposition 24.2. Assume that the Hk(MS) are finitely generated. Then

(1) If Hk+1(M) = 0, then Hk+1(MS) = 0 and the reduction map Hk(MS)→ Hk(M) is surjective.
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(2) If moreover Hk−1(MS) ։ Hk−1(M) then Hk(MS) is S-flat.

The point of cohomology and base change is, that these last two conclusions hold for any ring S, and
not just C[[t]]!

Consider now a flat deformation XS → S of a Calabi-Yau threefold. We want to show that T1
XS/S

and T2
XS/S are S-flat. We saw that T1

X = H1(Ω2
X) and T2

X = H2(Ω2
X). Now

T1
XS/S = H1(Ω2

XS/S) = rmHomS(H1(Ω1
XS/S), S)

T2
XS/S = H2(Ω2

XS/S) = rmHomS(H2(Ω1
XS/S), S)

and Ω1
XS/S is S-flat.

Now one can prove that

H1(Ω1
XS/S) ։ H1(ΩX) ???

Deforming Nodal Varieties

The theorem about smoothness of the base space BX continues to hold if the threefold X with
ωX
∼= OX has isolated cDV -singularities. Such singularities have small resolutions: a resolution

X̃ → X with exceptional set of codimension two. This implies that ω eX
∼= O eX . The simplest example

is that (X, p) is an A1-singularity. It can be resolved (in two ways) with an exceptional P1 with normal
bundle N = O(−1)⊕ O(−1). You cannot get rid of such a curve by deforming it, as T1

C→ eX
∼= T1

eX
:

T1
C/ eX

−→ T1
C→ eX

−→ T1
eX
−→ T2

C/ eX

‖ ‖

H0(N )= 0 H0(N )= 0

Theorem 24.3 (Friedman). If X̃ → X is a small resolution of a threefold with isolated singularities

then Def X̃ −֒→ Def X.

For a Calabi-Yau with only nodes we get the exact sequence

0 −→ H1(ΘX) −→ T1
X −→ H0(T 1

X) −→ H2(ΘX) −→ T2
X −→ 0

One gets

T2
X = H4(X̃,C)/

∑
[Ci]

where the [Ci] are the Poincaré duals of the exceptional curves Ci resolving the nodes.
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Chapter 26Exer
ises
3. (Perturbations of the equations of the coordinate axes) Consider the equations

f1 = yz, f2 = xz, f3 = xy

with relations

xf1 − yf2 = 0

yf2 − zf3 = 0

as in the first lecture. Deform the equations to

F1 = yz − s
F2 = xz − s
F3 = xy − s

and try to lift the relations. (Hint: start computing xF1 − yF2). Suppose s 6= 0 so you may divide by
s. Find in this way new generators of the ideal for (fixed) s 6= 0. What is the geometric interpretation?

Now take

G1 = yz + ty + tz

G2 = xz

G3 = xy

Determine the zero locus. Lift the relations.

Let P = C[x, y, z; t]. One has an exact sequence

0←− OXT
←− P G←− P 3 R←− P 2

with G the row vector (G1, G2, G3) and R the relation matrix. Write down this matrix and compute
its maximal minors.

4. (Cone over the rational normal curve of degree 4). Let P1 → P 4 be the embedding given by

zi = s4−iti, i = 0, . . . , 4.
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The equations are the minors of the matrix

(
z0 z1 z2 z3
z1 z2 z3 z4

)

Relations are easy to get: double a row, say the first one:



z0 z1 z2 z3
z0 z1 z2 z3
z1 z2 z3 z4




and compute the 3× 3 minors by developping them with respect to the first row. How many relations
do you get this way. Generalise to the rational normal curve P1 → P d of degree d.

Now look at the same equations in C5, or in other words: take the affine cone. Written out the
equations are

z0z2 − z2
1 z1z3 − z4

1 z2z4 − z2
3

z0z3 − z1z2 z1z4 − z2z3
z0z4 − z1z3

Compute the zero locus of the three equations in the upper row. They form a complete intersection
which coincides with our cone outside the coordinate hyperplanes. What can you say about a generic
perturbation of these equations (smooth, irreducible?)? Do you get a deformation of the cone by such
a generic perturbation?

Now consider the matrix (
z0 z1 z2 z3

z1 + t1 z2 + t2 z3 + t3 z4

)

Relations are easy!

Consider also the 2× 2 minors of 

z0 z1 z2
z1 z2 + s z3
z2 z3 z4




For s = 0 you get the same ideal as before. Lift the original relations.

5. Write down a quartic curve with an A4-singularity and draw a picture. The singularity is also called
rhamphoid (= beak-like) cusp.

6. Find adjacencies Ak → Ak−1, D4 → A3 and E7 → D6.

7. Find the invariants of the action of G = Z/n on C2 defined by (x, y) 7→ (ζx, ζy) with ζ = e2πi/n a
primitive nth root of unity. Determine the equations of the image of the resulting map C2/G→ CN .

8. Determine the image of the map

ϕS : (C
∐

C)× S −→ C3 × S

defined by
(x , s) 7→ ((x, o, s), s)

( y , s) 7→ ((0, y, s), s)

and check that Im(ϕS)0 6= Imϕ0. (This is called “pulling apart two lines”.)
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9. What is an equation for the 4-nodal cubic surface in P3?

10. Compute the Euler number of a hypersurface in P1 × P2 given by a bihomogeneous polynomial
F (X0, X1;Y0, Y1, Y2) of bidegree (d1, d2).

11. Compute K2 of the above example.

12. How will an ordinary triple point (say on a hypersurface in P3) affect the pluri-genera?

13. (Deformation of maps) Two maps f :X → Y and f ′:X → Y are called (left-right) equivalent if there
exist automorphisms g:X → X and h:Y → Y such that f = h ◦ f ′ ◦ g.
A deformation of f over S is a map

fS :X × S −→ Y × S
(x, s) 7→ (f(x, s), s)

such that f(x, 0) = f(x).

a) When would you call two deformations over S equivalent?

b) Let X = (C, 0) and Y = {xy − z2 = 0} ⊂ (C3, 0) and consider the map f :X → Y given by
t 7→ (t, t, t). Find a non-trivial deformation of f over C[ε]/(ε2).

c) Show that this deformation does not lift to second order.

14. Explain the difference between C[[s]][x] and C[x][[s]].

15. The smooth affine curve C:x3 + y3 + 1 is rigid (T 1
C = H1(C,ΘC) = 0), so C → 0 is an algebraic,

formally versal object, yet the 1-parameter family x3 + y3 +1+λxy is non trivial. Show that a formal
change of coordinates trivialises the family (hint: first consider the first order case). Why is it not
convergent?

16. Compute T 1 for all A–D–E singularities.

17. Find the miniversal deformation of A2. Describe the discriminant, i.e. the locus in the base space
over which the fibres are singular. What type of singularities can be found in these fibres?

18. Let X = Spec(k[x1, x2, x3, x4]/(x1, x2, x3, x4)
2 be the fat point of multiplicity 5. Compute T 1

X . (More
work, but possible: compute T 2

X).

19. Let X be the union of the (x, y)-plane and the z-axis in C3. Compute the first order embedded
deformations NX in C3 and show that all are in the image of ΘC3 ⊗OX (i.e. T 1

X = 0). Interprete this
geometrically.
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20. Let X be the cone over the rational normal curve of degree 4, which is given by the 2 × 2 minors of
the matrix (

z0 z1 z2 z3
z1 z2 z3 z4

)

a) Compute T 1
X .

b) If dimT 1
X = τ choose parameters ε1, . . . , ετ and write down a deformation of X over

Spec k[ε1, . . . , ετ ]/(ε1, . . . , ετ )2

which is versal to first order

c) Try to lift your deformation from b) to a deformation over

Spec k[ε1, . . . , ετ ]/(ε1, . . . , ετ )3 .

21. Let X consist of the coordinate axes in Cn; equations are zizj = 0 for i 6= j. Compute T 1
X .

22. Let X = C1 ∪ C2 be the union of two transversally intersecting curves of genus g1, g2 ≥ 2.

a) compute pa(X). Make an educated guess for the dimension of T1
X .

b) compute H1(X,T 0). Hint: try to compute on the normalisation X̃ = C1

∐
C2 and show that

H1(X,T 0) = H1(C1,ΘC1
(−P ))⊕H1(C2,ΘC2

(−P )) where P = C1 ∩C2 is the intersection point.

c) Compute the dimension of T1
X .

d) What happens if the genus is zero or one?

23. Let 0 6= f ∈ k[x1, . . . , xn] and set Y = V (f). Let X = A1
k be a line and let ϕ:X → Y be any map.

“Compute” the modules T 0
X/Y , T 1

X/Y and T 2
X/Y .

24. Let C ⊂ P2 be a smooth octic in the plane given by a homogeneous polynomial f8(X,Y, Z) and
consider the ‘double octic’ X obtained as two-fold covering of P2 branched along C, so X is given by
W 2 = f8(X,Y, Z).

a) What is the Euler number of C? Use this to compute the Euler number of X .

b) On how many parameters does the construction of X depend (this is the as the number of param-
eters for C).

c) Use the adjunction formula to show that K2
X = 2. Recall that KX = π∗KP2 +B where π∗B = C.

d) Plug in the formula for χ(ΘX). What do you get? Does this fit with b)?

25. Compute the module ΘX = Derk(OX , sierX) for the Ak-singularity X = {xy − zk+1 = 0}.
What derivation do you always n have on a weighted homogeneous hypersurface? Try to prove that
there are no more. (A function f ∈ k[x0, . . . , kn] is weighted homogeneous iff there exist positive
numbers a0, dots, an such that f(ta0x0, . . . , t

anxn) = tf(x0, . . . , xn).)

26. Consider the quadric cone XY − Z2 in P3. Blow up the vertex (0 : 0 : 0 : 1) of the cone in P3 and
show that the strict transform of the cone is the surface F2.
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27. Describe the two rulings on the standard model XY −ZW = 0 of the Segre embedding of P1×P1 into
P3. Consider the same equation in k[x, y, z, w]. Show that it defines a 3-dimensional A1-singularity

X ⊂ A4. Using a ruling one gets a codimension two subvariety X̃ of P1 × A4 given by the minors of

(
α x w
β z y

)

where (α : β) are coordinates on P1. Compute the fibres of the map X̃ → X . Show that X̃ is smooth.
Hint: look at affine charts on P1.

28. Consider the deformation XY − Z2 + sW 2 of the quadric cone. Show that for s 6= 0 the fibre is a
smooth quadric isomorphic to P1 × P1. Show that after a base change s := t2 the total space has one
singular point which can be resolved as in the previous exercise. Show that one obtains in this way a
deformation of F2 into P1 × P1.
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Ideas
Here the main ideas we (Jan and Duco) have on the book (December 10, 1997).

(1) The photograph of the participants of the summer school in Nordfjordeid should be in the book!
The book as it now represents fairly precise what we did then. It seems in retrospect that we
did rather well, and we should not make very big structural changes. We suggest that we all
should read and think about this first version of the book, discuss with each other (e-mail), and
make corresponding changes later. Also, it seems important that we do this quickly, for obvious
reasons.

(2) The book seems to consist globally of five blocks, application oriented ones seperated by more
abstract ones. We think this was a good idea, and should be retained more or less. Additions
and subtractions should be made with this structure in mind.

(3) We should include some clear proofs, in fact as much as possible, and especially if it is about
deformations. E.g. the book should contain proofs that Plückers und Kleins ideas work. Or
curves that really move in a surface. Or that the ADE really have simultaneous resolution
and realise the Weyl-group quotient. But standard tools from alg. geometry only need good
reference.

(4) It seems a good idea to collect references to the literature and add comments, historical remarks,
credits, exercises at the end of each chapter.

(5) The book should contain more examples of miniversal but not universal families. One could
think of more detailed descriptions deformation of A1 and A2 singularity. Examples of induced
families. Schlessingers condition H4.

(6) Kodaira-Spencer map has to be covered better. By way of examples, but also its place in the
general formalism. It occurs in the lectures only in the form of characteristic map. And of course
in the isomorphism Tangent space to moduli=H1(Θ).

(7) Formal smoothness should be explained more extensively.

(8) We should maybe include some clear examples or exercises of Functors NOT satisfying Sch-
lessinger. (Are there any?) Convergence problems should be discussed. (What are these Dufour
things really about?).

(9) There are several interesting topics we could add.

• Maps to singular spaces to give easily accessable examples of obstructions. And it has close
relation to formal smoothness. Put in Block III?

• Deformations of algebras. More in the beginning, also good example of deforming some-
thing. Do not need flatness. You see cohomolocal things coming into the picture.

• Kodaira’s theory of deforming surfaces with ordinary singularities. This fits very well in
the spirit of the book. Add more to the end.
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• The Calabi-Yau stuff should be extended a little bit, but not too much.

• We should not put in more, because otherwise it will become a never ending story.

(10) We have the following suggestions for more drastic changes.

• In chapter 2 the computation of H1(Θ) should be removed. Instead, the counting of
parameters by geometrical methods should be extended and discussed more completely. It
would also be a good place to define the general notion of family of smooth complex spaces
as submersion to parameter space and get the topological/differentiable triviality of the
family in the forground. Change in complex structure only. Maybe the example F2 and
F0. Jump phenomena. No moduli space?

• The part on the ADE singularities should be moved before the surfaces. We could extend
on it, define resolutions, rational singularities in general. These things are used everywhere.
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Fonts

The file provides first of all abbreviations for fonts. The BlackBoardBold font

ABCDEFGHIJKLMNPQRTUVWXYZ

are obtained by typing \A etc. Note that \O and \S are missing so O can only be obtained with
\mathbb O and respectively for S. Alternative names are \integer for Z, \proj for P, \complex for
C and \real for R.

These fonts are used for the cotangent complex L and for hypercohomology. This can be changed
later maybe into H, so for F, L, T and H the alternatives \FF, \LL, \TT and \HH are provided.

For the preferred script font for the book:

A BC DE FG H I J K L MN OPQRS T U V W X Y Z

one has to type \sA etc. The commands \cO, \cI, \cL, \cR, \cN, \cT and \cX have the same effect
and are provided for compatibility with earlier notes.

Fraktur letters are \gm or \mi for m, \gp for p and \gq for q.

The greek letters \varepsilon (ε) and \varphi (ϕ) have the abbreviations \eps and \vp. Note that
\epsilon and \phi give ǫ and φ.

Furthermore there are abbreviations

\uf F
\uc C
\ADE A–D–E
\half 1

2

\tX or wtx X̃

Arrows

\inj →֒
\surj ։

\linj −֒→
\lsurj −։
\lra −→
\lla ←−
\lma 7−→
\implies ⇒
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A map f :X → Y ($f\colon X\to Y$, note the difference with $f: X\to Y$: f : X → Y just as \mid
gives the same as | but with different spacing, correct for use in definitions of sets) can be written as
X

f−→ Y by $X \mapright{f} Y$. Likewise X
f−−→ Y by $X \maplongright{f} Y$ and X

f←− Y
by $X \mapleft{f} Y$. We have

xf

yf

by \mapup{f} and \mapdown{f}.

log like operators

\Spec Spec
\Der Der
\Def Def
\Hom Hom
\Ext Ext
\Aut Aut
\ord ord
\supp supp

\depth depth
\Ker Ker
\Im Im
\Coker Coker
\ob ob
\pd pd
\codim codim

Theorems

We have the following environments which have the syntax

\begin{theorem}

This is the text of a theorem.

\end{theorem}

\begin{defn}

This is the text of a definition.

\end{defn}

\begin{remark}

This is the text of a remark.

\end{remark}

\begin{proof}

This is the text of a proof.

\end{proof}

and have the effect:

Theorem 26.1. This is the text of a theorem.

Definition 26.2. This is the text of a definition.

Remark 26.3. This is the text of a remark.

Proof. This is the text of a proof.

In the same style as Theorem we have: proposition, corollary, algorithm, claim. In the same
style as Definition: example, problem, comment, exe, where the last one gives ‘Exercise’.

In the same style as Theorem there is an environment where the name has to be specified:
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Joke 26.4. This is not funny.

was obtained by typing:

\thm{Joke} This is not funny.

\endthm

Note that one should end with \endthm without braces!

An unnumbered Definition with name to be given:

Observation. Text, but no number.

is obtained by

\rmk{Observation} Text, but no number.

\endrmk

Centered headings

These are obtained with

\tussenkop{Centered headings}

Maybe these subsections should also be numbered.

Pictures

Picture files of type .eps are included with

\plaatje[xcm]{file-name}

where xcm is the optional \epsfxsize .


